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Abstract

This thesis investigates the dynamics of electrons ionized by strong low frequency laser
fields, from a semiclassical perspective, developing a trajectory-based formalism to describe
the interactions of the outgoing electron with the remaining ion.

Trajectory models for photoionization generally arise in the regime known as optical tun-
nelling, where the atom is subjected to a strong, slow field, which tilts the potential
landscape around the ion, forming a potential energy barrier that electrons can then tun-
nel through. There are multiple approaches that enable the description of the ionized
electron, but they are generally limited or models derived by analogy, and the status of
the trajectories is unclear.

This thesis analyses this trajectory language in the context of the Analytical R-Matrix
theory of photoionization, deriving a trajectory model from the fundamentals, and showing
that this requires both the time and the position of the trajectory to be complex. I analyse
this complex component of the position and I show that it requires careful handling: of
the potentials where it appears, and of the paths in the complex plane that the trajectory
is taken through.

In this connection, I show that the Coulomb potential of the ion induces branch cuts in the
complex time plane that the integration path needs to avoid, and I show how to navigate
these branch cuts. I then use this formalism to uncover a kinematic mechanism for the
recently discovered (Near-)Zero Energy Structures of above-threshold ionization.

In addition, I analyse the generation of high-order harmonics of the driving laser that are
emitted when the photoelectron recollides with the ion, using a pair of counter-rotating
circularly polarized pulses to drive the emission, both in the context of the conservation of
spin angular momentum and as a probe of the long-wavelength breakdown of the dipole
approximation.

3



Resumen

Esta tesis explora la dinámica de la ionización de electrones inducida por un campo ex-
terno fuerte y de longitud de onda larga, y hace una descripción, basada en trayectorias
semiclásicas, de las interacciones que ocurren entre el electrón y el ion una vez que el
electrón aparece en el continuo.

En general, la fotoionización puede describirse en términos de trayectorias semiclásicas
en el régimen de tunelaje óptico: cuando un átomo interactúa con un campo fuerte y de
frecuencia baja, se genera un potencial lineal que oscila con el campo, lo cual una barrera
de energía potencial bajo la cual pueden salir el electrón. Una vez fuera del átomo, existen
múltiples métodos para describir al electrón con base en las trayectorias clásicas del mismo
sistema, pero en general dichos métodos son modelos que funcionan con base en analogías
y sin sustento en la ecuación de Schrödinger que subyace al sistema, y la naturaleza de
dichas trayectorias no queda enteramente clara.

En esta tesis, analizo este tipo de modelos mediante el método analítico de la matriz R (an-
alytical R-matrix theory), que permite la derivación de un modelo basado en trayectorias
a partir de la ecuación de Schrödinger del sistema. Dentro de este formalismo, en general,
la trayectoria del electrón tiene una componente imaginaria tanto de la posición como del
tiempo. Un análisis detallado de esta componente imaginaria, y del comportamiento del
potencial atómico cuando se incluye la misma, demuestra que se requiere cuidado con su
uso para evitar divergencias y cortes rama en el potencial.

En particular, el potencial coulombiano del núcleo deja cortes rama en el plano complejo
del tiempo, en el cual se desenvuelve la curva de integración que representa a la trayectoria.
Este contorno de integración debe evitar dichos cortes rama, lo cual restringe el tipo de
contornos que pueden usarse; para ello, presento un algoritmo que permite navegar los
cortes de forma automática. De este algoritmo surge naturalmente una descripción cinética
de estructuras a muy baja energía (Near-Zero Energy Structures), que fueron observadas
recientemente en experimentos de ionización con campos fuertes con longitudes de onda
en el infrarrojo.

Adicionalmente, en esta tesis exploro la generación de armónicos de alto orden, que se
emiten cuando el fotoelectrón regresa al ion y emite su energía cinética al recombinar
con el hueco electrónico que dejó al salir del átomo. Más en específico, examino la gen-
eración de armónicos bajo dos campos circulares contra-rotantes, como un medio para
entender la conservación de momento angular de spin durante el proceso, y para examinar
el comportamiento en el límite de longitud de onda larga, donde se observa un fallo de la
aproximación dipolar.
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Chapter 1

Introduction

From the earliest days of quantum mechanics, the interaction of matter with electromag-
netic radiation has been one of the central topics of physical research, and one of the main
tools for the investigation of the world around us. Within this field, the ionization of atoms
and molecules with light has been an incisive probe of atomic and molecular structure,
and it has informed much of our understanding of the structure of matter.

However, the naive picture of ionization, which roughly reads “an atomic electron
absorbs a photon and uses the energy to fly away,” is misleadingly simple, and it hides much
of the complex dynamics that ionization can encompass. For example, as the strength of
the interaction increases, it enables multi-photon mechanisms that break out of the box
of perturbative processes, with rich new dynamics that form a fresh new frontier between
quantum and classical physics. This thesis works within this frontier.

We will work, in particular, with processes where an atom or molecule is subjected to
a laser field with a long wavelength (so the photon energy is low, and many photons are
required for each process) and the intensity is high (to supply the necessary photons). In
this regime, the single-photon picture of ionization fades somewhat, giving way to a semi-
classical picture of ionization where the electron is increasingly well described by trajectory
language, though still retaining clear markings of quantum mechanics like interference be-
tween the outcomes from different trajectories and, in our case, complex-valued positions
and times that stem from the application of trajectory language to situations that involve
quantum mechanical tunnelling.

We will then examine this trajectory language, and explore the rich dynamics that it
includes. How does quantum mechanical tunnelling emerge from a strong optical field?
How can we describe it, starting from first principles, using trajectory language? How
do complex time and complex positions arise in this context? What does it mean for
a trajectory to have complex components, and how does such a trajectory interact with
the ion? These are some of the questions we will grapple with.

In addition, we will also examine some of the things that the photoelectron can do
once ionized – and, more specifically, the possibility for it to meet up with its parent ion
and emit a sharp burst of high-frequency radiation.

17
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1.1 A brief history of strong-field ionization

The history of strong-field physics has been driven, to a large extent, by the development
of lasers, which are uniquely able to provide the high intensities that drive physics out of
the perturbative box. This pairing begins with T.H. Maiman’s invention of the laser [15],
which was used within five years of its creation to break ionization far from the single-
photon, by ionizing xenon (with an ionization potential of 12.13 eV) employing a ruby laser
(with a photon energy of 1.79 eV) [16, 17]. Since that initial contact, laser developments
have been a major driver of the field, and indeed later in this thesis we will help explain
phenomena uncovered by new lasers, and prepare the way for the uses of future sources.

In terms of the ionization process, if it is possible for an electron to absorb six photons
to leave the atom, then it is not such a stretch to ask for the absorption of an additional,
seventh photon: can a photoelectron absorb from the field more energy than the bare min-
imum it needs to fly away? As we shall see, the answer is a resounding yes – a phenomenon
known as above-threshold ionization (ATI) –, and at the end of this thesis we will see the
photoelectron brokering the exchange of many thousands of laser photons. The start of
this story, of course, is more modest, with the observation of electrons ionized from xenon
with one more photon than strictly necessary [18]. However, as technology improved,
it became possible to observe the additional absorption of more and more photons [19]
and, more surprisingly, to see the higher-order peaks become stronger than the low-order
ones [19, 20].

This marks the beginning of non-perturbative strong-field physics, where the atom
can no longer be considered to be driven by its own intrinsic dynamics with some minor
influence by the radiation; instead, the laser field needs to be considered as an integral part
of the dynamics, if not the major determinant in the electron’s motion. This change in
regime became evident with the observations of longer peak series [21], nontrivial angular
dependence for these peaks [22], strong dependences on the laser’s polarization [23], and
even long plateaus of photoelectron peaks [24]. Similarly, the generation of high-order
optical harmonics with a broad, flat plateau [25, 26], far from the exponential drop-down
of perturbative theory, called for such a break from the usual theory.

The non-perturbative theory that explains these phenomena, on the other hand, had
been ready and waiting for a long time. In fact, it also took but a few years from the
invention of the laser for L. V. Keldysh to lay the groundwork theory for the interaction
with such pulses [27], with work that introduced essential ideas that remain in use fifty
years after its formulation [28]. Keldysh’s theory, later extended by F. H. M. Faisal and
H. Reiss [29, 30], as well as by A. M. Perelomov, V. S. Popov and M. V. Terent’ev [31–33],
introduced the idea of optical tunnelling: the idea that, if the frequency of light is low
enough, it is best thought of as a slowly oscillating linear potential, V (r) = Fz cos(ωt),
which combines with the atomic potential well to form a potential barrier that the electron
then tunnels through.

This thesis works primarily within this tunnelling theory, the basics of which we will
develop in section 1.3 below, and which has produced a long line of interesting advances
over the years. For more details, we refer the reader to several good recent reviews [34–36].
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1.2 Applications

The ionization of atoms and molecules in strong fields seems, at first glance, like a some-
what esoteric phenomenon, since the fields in question are often rather outside the range of
any naturally occurring fields. However, this in itself provides a strong intrinsic motivation
to study the behaviour of matter in this regime: the use of strong fields gives us a window
into the behaviour of matter in situations where it is relatively untested, and, moreover, at
the boundaries between well-understood behaviours, where rich and interesting dynamics
have plenty of room.

In addition to its intrinsic interest, strong-field physics can tell us much about the
structure and dynamics of the quantum mechanical systems that it probes, and it has
produced several interesting windows on their behaviour. Some of these come from the
direct observation of photoelectrons once they have come out, but many of them arise from
recollision phenomena and hinge on effects that happen when the ionized photoelectron is
brought back to its parent ion and interacts with it.

These phenomena include, for example, laser-induced electron diffraction [37–39] and
holography [40], where the recolliding electron diffracts on the nuclear and electronic
structure of its parent ion, allowing us to image it both directly and via interference
effects between the rescattered electron wave and the incident wavepacket. In this setting,
the very high energy and momentum carried by the photoelectron during the recollision
afford us a very fine-grained view of the molecule, in terms of both spatial and temporal
resolution.

Similarly, many additional interesting ionization phenomena also depend on recolli-
sions, including high-order above-threshold ionization, where electrons that rescatter off
of the ion can achieve even higher energies than the usual tunnelling picture would pre-
dict [24], and the surprisingly high efficiency of multiple ionization in strong laser fields [41],
mostly through non-sequential multiple ionization mechanisms where one photoelectron
returns to the ion and, in the ensuing recollision, ionizes one or more additional electrons.

Perhaps more importantly, the photoelectron’s recollision with the ion is also a crucial
way to generate radiation: as it passes by the nucleus, the photoelectron wavepacket
interferes with the residual wavefunction that was left behind, making it oscillate and
emitting a short, sharp burst of high-frequency radiation. This process is known as high-
order harmonic generation (HHG), to which we will devote the second part of this thesis.

High-order harmonic generation is an important process, both scientifically and tech-
nologically, because it allows us to access time and length scales that have so far been
unexplored. More specifically, it can be used to generate pulses of radiation that are so
short – in the regime of a few femtoseconds, and even down to tens of attoseconds – that we
can now probe the motion of nuclei and electrons inside molecules with a time resolution
that matches their dynamics [42]. HHG provides a bright, coherent source of such pulses,
without the need of a facility-scale experiment at a free-electron laser, and this is driving
an entire new field known as attoscience [43, 44]. In the second part of this thesis we will
study and extend this process, providing ways to understand its relationship with spin
angular momentum and to extend the available range of frequencies and time resolutions
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even further.
Much of strong-field physics, then, relies on models based on recollision phenomena,

both in terms of the looser mental framework as well as in terms of the specific mathematics
used in the analysis. In fact, a broad swathe of results can be analyzed quite well by simply
using the ionization rates obtained via a simplified tunnelling model to seed electrons
ionized at different times in the laser field, and subsequently propagating them on classical
trajectories.

However, the exact manner in which these trajectories arise from the Schrödinger
equation is much less clear, and the success of the technique asks for a closer examination
into their fundamental origin. The first part of this thesis deals largely with this problem:
finding a trajectory language that describes the semiclassical post-ionization dynamics of
the photoelectron, and obtaining these trajectories, in as complete a fashion as possible,
directly from the Schrödinger fundamentals, rather than imposing them externally on
the formalism.

1.3 Theoretical approaches to strong-field ionization

Strong-field ionization is, in principle, well-understood, since it follows from the non-
relativistic Schrödinger equation, with electrostatic Coulomb interactions between elec-
trons and the nucleus, and with standard couplings to the driving radiation. (Occasionally
one needs to include spin-orbit couplings [45] or relativistic effects [46], but we will not
need to do so here.) Thus, strong-field ionization largely falls within what Dirac aptly
described in 1929 [47]:

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and
the difficulty is only that the exact application of these laws leads to equations
much too complicated to be soluble.

In essence, this means that all of the effects we will consider can in principle be deduced
from the time-dependent Schrödinger equation (TDSE), and indeed if it were possible to
integrate it directly, quickly and efficiently, for all relevant parameter ranges, then much
of our work here would be unnecessary.

However, this is far from the case, and the numerical integration of the Schrödinger
equation faces formidable challenges. Some of these are shared with the rest of atomic
and molecular physics, and come from the unfavourable exponential scaling introduced by
the presence of multiple electrons, for which even a moderate basis for the state space of
each electron exponentiates to an unmanageable basis size for the full state space. Other
challenges are more specific to strong-field physics, which involves electron motion over
very large excursions (necessitating a large spatial grid) with very high momenta (calling
for a small grid spacing), and with large energies (which require small timesteps).

These challenges are mostly surmountable, at least for specific situations and where
the dynamics reduces to that of a single electron, and indeed there is a wide array of
different methods to numerically solve the TDSE, which are well reviewed by A. Scrinzi
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in Ref. 48, and which work for various different situations. These numerical solutions,
however, tend to be computationally intensive, often to a prohibitive extent, and they
are often overpowered for the insights we want to draw from them. In fact, we are often
hindered in our understanding because even a full solution of the TDSE can be hard to
analyze; as an example, it is often impossible to separate the contributions to ionization
from different peaks of the field, even in situations where these contributions are clearly
distinct and fulfil different roles in the dynamics. Thus, to retake Dirac’s text,

It therefore becomes desirable that approximate practical methods of applying
quantum mechanics should be developed, which can lead to an explanation of
the main features of complex atomic systems without too much computation.

In general, these approximate methods revolve around Keldysh’s ideas about optical tun-
nelling, and in particular the Strong-Field Approximation, to which we now turn.

1.3.1 Basic pictures of ionization

In general, there are two basic mental pictures of strong-field ionization, the multiphoton
picture and the tunnelling picture, which are best explained graphically, as shown below.

(a) Multiphoton picture (b) Tunnelling picture

Figure 1.1: Basic pictures of strong field ionization: (a) the multiphoton picture, in which
an electron absorbs multiple energy quanta from the external field, and (b) the tunnelling
picture, in which the external potential VL = −Fx cos(ωt) tilts the potential landscape
enough to form a barrier the bound wavefunction can tunnel through.

As shown by Keldysh, these two pictures are actually two different sides of the same
coin, and they are only truly valid as limiting behaviours. More concretely, if we consider
the ionization of a system with ionization potential Ip = 1

2κ
2 by a monochromatic field of

the form F cos(ωt), with angular frequency ω and electric field amplitude F , then much
of the behaviour is governed by the Keldysh adiabaticity parameter,

γ = κω

F
=
√

Ip
2Up

, (1.1)

often called simply the Keldysh parameter. Here we assume that the field is ‘slow’, or that
the target is ‘hard’, in the sense that ω � Ip, and it takes multiple photons to ionize the
system.

However, there is a separate timescale to consider – the time it takes for the electron
to tunnel through the barrier at the peak of the field, which can be estimated using
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quasi-static arguments [49] as τtunn ∼ κ/F . Thus, if the field changes slowly enough to
permit appreciable tunnelling, in the regime of low γ ∝ ω, the behaviour is mostly in the
tunnelling picture. Conversely, if the field is too fast or too weak for this, and γ stays
high, then the ionization mostly displays multi-photon picture features that can mostly
be explained through a perturbation-theory viewpoint.

Alternatively, the Keldysh parameter can also be seen as the relationship between
the energy scales of the ground state energy, −Ip, and the ponderomotive potential
Up = F 2/4ω2, which is the average oscillatory energy of an electron moving in the field.
Thus, at low γ, the oscillatory motion has much more energy than that required to ionize
the electron in the first place, and vice versa.

1.3.2 A quick note on units

Throughout this thesis we will use the atomic system of units, unless otherwise noted. This
system of units is fixed by taking the essential dynamical quantities of atomic physics as
unity,

~ = me = e2 = 1
4πε0

= 1, (1.2)

and it is reviewed more fully in Appendix A. Also note that, to avoid confusion between
energies and electric fields, we denote the latter with the letter F throughout.∗

1.3.3 Essential approximations

To make our treatment more concrete, we now need to start approximating, since the full
Schrödinger equation requires the brunt of a numeric integrator to handle in full. There
are several key approximations that we need to make, with varying degrees of generality
(and some of which we will discard later on).

• We will work throughout using non-relativistic quantum mechanics, an approxima-
tion that states that the laser field may well move the electrons fairly violently, but
it will keep them at a reasonable fraction of the speed of light; this sets an upper
limit of field strength at about 1016 W/cm2 (at which field strength most species get
multiply ionized), and we will stay below that regime.

In chapter 9 we will come somewhat close to relativistic velocities but, for the ob-
servables of interest there, a full relativistic treatment is not necessary.

• In addition, we will also work, with the exception of chapter 9, within the dipole
approximation. In general, if we have a non-relativistic electron subject to an atomic
potential V (r) and interacting with a laser field of vector potential A(r, t) of the
external field (which we always take in the radiation gauge, and which relates to the

∗Since we’re discussing style, this is a good place to apologize for the use of the plural first person
throughout this thesis. This is relatively awkward, but the singular first person is even worse, and pas-
sive constructions are the bane of readability. The author invites the reader to include his or herself in
this scientific ‘we’, or (if that is uncomfortable) to include the immortal F.D.C. Willard in that plural
first person.
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electric field via F(r, t) = −∂A
∂t (r, t)), then the minimal coupling hamiltonian reads

Ĥ = 1
2 (p + A(r, t))2 + V (r). (1.3)

In general, the spatial variation of the vector potential A(r, t) will be on the order of
the wavelength λ of the laser; the shortest such wavelength that we will consider will
be 400 nm, on the order of 1000 a.u. In a strong field context, the electron can make
some very long excursions, but these will typically be smaller than the wavelength
(and, moreover, will tend to be orthogonal to the propagation direction).

This means, then, that we can safely replace the vector potential with its value at the
nucleus of our atom of interest (or, with molecules, at the nuclear centre of charge),
getting a hamiltonian of the form

Ĥ = 1
2 (p + A(0, t))2 + V (r). (1.4)

We will term hamiltonians of this form as being in the velocity gauge, since the
interaction hamiltonian in Ĥ = 1

2p2 + V (r) + A(0, t) · p + A(0, t)2 couples directly
to the velocity operator p.

Working in the dipole approximation allows us to change to a more convenient
gauge, which we will term the length gauge, via the unitary transformation Û =
e−iA(0,t)·r̂e−

i
2

∫
A(0,t)2dt, which gives the length-gauge hamiltonian as

Ĥ = 1
2p2 + V (r)− r · F(0, t). (1.5)

As a separate effect, within the dipole approximation the vector potential has no
spatial dependence, which means that its magnetic field B(r, t) = ∇×A(r, t) neces-
sarily vanishes. In chapter 9 this will push us to discard the dipole approximation but
unless one works at extremely high intensities or at very long wavelengths (which, as
we shall see, can also cause a breakdown of the dipole approximation), the magnetic
field is negligible. (Finally, for notational convenience, and unless it is required for
clarity, we will henceforth drop the spatial indicator 0.)

• While this is seldom made explicit in more recent strong-field physics, most of what
follows requires that the laser pulse be short enough for the laser pulse to end before
the photoelectron can leave the focus, which in practice needs pulses shorter than
some hundreds of femtoseconds. If this fails, then one needs to consider the effect
on the photoelectron’s momentum of the edge of the focus, which will drastically
change the structures of interest; moreover, a long pulse can quite easily saturate
the ionization. Pulses of this length are, of course, perfectly accessible to modern
light sources and indeed they are required to attain the intensities at play.

• Moreover, we will work in the clamped-nucleus approximation, both for the handling
of atoms and with molecules, leaving the nuclei at their equilibrium separation.
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In addition to these approximations, most of strong-field physics works rather well
under what is known as the Single-Active Electron (SAE) approximation, which is im-
plicit in both the hamiltonians in (1.4) and (1.5) above: in general, much of strong-field
phenomena can be understood rather well by assuming that each electron acts indepen-
dently, neglecting the effects of electron correlation and exchange, and that the rest of the
electrons in the system act only to provide the effective potential V (r).

The single-active electron approximation is remarkably effective, mostly due to the
fact that a strong laser field will typically take the active electron far away from the
rest of the system rather quickly, and it will afterwards be dynamically very different
from the remaining electrons, even if it comes back to do diffractive imaging. In fact, it
works well even in non-sequential double ionization via recollision mechanisms, where the
pre-recollision dynamics can essentially be done with a single active electron.

On the other hand, there are multiple reasons to go beyond the single-active electron
paradigm, which we will recount in more depth in chapter 3, especially driven by the fact
that the ion can be left in an excited state after the pulse is over. While this can happen
through single-electron mechanisms, essentially by removing an electron from an orbital
below the highest-occupied one, there is increasing evidence that electron correlation can
play a role in this process.

To accommodate for this we will build a multi-electron theory in chapter 2 and exam-
ine it in more detail in chapters 3 and 4, before reverting to single-electron phenomena for
the rest of the thesis. For the moment, we will show a sketch of the Strong-Field Approx-
imation, as developed by Keldysh, within the single-active electron approximation.

1.3.4 The Strong-Field Approximation

This leaves us, then, with the final core approximation of analytical strong-field physics,
the stipulation that after the ionization step the photoelectron is at the mercy of the
radiation field, if it is strong enough, and that the electric field of the ion plays, at most,
a perturbative role. This can be done in a number of different ways, giving slightly
different approaches, many of which are grouped under the name of the Strong-Field
Approximation, despite their (sometimes substantial) differences. We will not delve into
the various formulations of this approximation, which has been reviewed elsewhere [34,
50]; instead, we will give a sketch of Keldysh’s original approach and then discuss the
generalities of the overall method.

We begin, then, with the Schrödinger equation in the presence of the laser field, in
the form

i
d
dt |ψ(t)〉 = Ĥ |ψ(t)〉 =

[1
2p2 + V (r) + r · F(t)

]
|ψ(t)〉 , (1.6)

where we are assuming a single active electron and working in the length gauge. As an
initial condition, we take the electron to sit in the ground state of the system, e−iEgt |ψg〉,
before the pulse starts. The core of the Strong-Field Approximation, as a method, is to
assume, first, that this is the only bound state of the system that will contribute to the
dynamics (though, again, that can be relaxed [51]). We postulate, then, an Ansatz of the
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form
|ψ(t)〉 = e−iEgt |ψg〉+ |ψout(t)〉 , (1.7)

where |ψout(t)〉 is the outgoing continuum electron.
(Here it is important to remark that, although physics should in principle be fully

gauge-independent, as will be much of our handling of |ψout(t)〉, the Ansatz in (1.7) is
not gauge independent, since we are performing an approximation by trimming down the
complete set of bound states to just a single component, so this is actually a different
approximation if performed in the velocity gauge [50], which can correspondingly lead to
different results.)

In addition to the bound-state Ansatz in (1.7), the Strong-Field Approximation also
completely ignores the role of the atomic potential V (r) once the electron is in the con-
tinuum, so the outgoing wave-packet obeys the laser-only Schrödinger equation,

i
d
dt |ψout(t)〉 =

[1
2p2 + r · F(t)

]
|ψout(t)〉 . (1.8)

This equation can, fortunately, be solved exactly,∗ and moreover it admits solutions which
are plane waves throughout, known as Volkov states. These are given by〈

r
∣∣∣Ψ(V)

p (t)
〉

= 1
(2π)3/2 e

i(p+A(t))·re−
i
2

∫ t
T

(p+A(τ))2dτ , (1.9)

and they have a kinetic momentum v(t) = p + A(t) which oscillates with the laser field,
accruing phase via the kinetic energy 1

2v(t)2.
The Volkov states are excellent building blocks, and we will later modify them to

account for the Coulomb field of the ion, to give the eikonal-Volkov states of chapter 2,
and to include the magnetic field of the driver, giving us non-relativistic non-dipole Volkov
states in chapter 9. For the moment, though, we keep them as they are.

This means that we can re-phrase our Ansatz in the form

|ψ(t)〉 = e−iEgt |ψg〉+
∫

dp a(p, t)
∣∣∣Ψ(V)

p (t)
〉
, (1.10)

where a(p, t) is the time-dependent amplitude of each Volkov state, which we need to
solve for. This Ansatz comes with the assumption that

〈
ψg
∣∣∣Ψ(V)

p (t)
〉
≈ 0 for all canonical

momenta p, which is clearly wrong, but it does a good job at specifying the separation of
the active Hilbert space into a bound-state component and a field-driven continuum.

We have, then, a full Ansatz for the wavefunction, (1.10), which now allows us to put
it into the Schrödinger equation to get the dynamics. Since we have included most of the
dynamics already into our bound and continuum components, the Schrödinger equation

∗Incidentally showing that exact solutions in quantum mechanics are not confined to the harmonic oscil-
lator as the go-to system. Instead, it is also perfectly possible to solve for a particle in a uniform force
field, even with an arbitrary time dependence.
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simplifies a good deal, to give(
i

d
dt − Ĥ

)
|ψ(t)〉 = −r · F(t)e−iEgt |ψg〉+

∫
dp

(
i
∂a

∂t
(p, t)− V (r)a(p, t)

) ∣∣∣Ψ(V)
p (t)

〉
,

(1.11)

or, projecting on the Volkov state
∣∣∣Ψ(V)

p (t)
〉
,

i
∂a

∂t
(p, t) = e−iEgt

〈
Ψ(V)

p (t)
∣∣∣r · F(t)

∣∣∣ψg〉+
∫

dp′ a(p′, t)
〈

Ψ(V)
p (t)

∣∣∣V (r)
∣∣∣Ψ(V)

p′ (t)
〉
. (1.12)

Here we perform our final approximation by neglecting the second term, which represents
continuum-continuum transitions induced by the atomic potential, i.e. scattering on the
atomic core, which is again outside of the SFA (though it can be put back in to account
for rescattered electrons in ATI [52]).

The Schrödinger equation thus reduces to a simple ordinary differential equation, and
its solution can be stated simply in terms of a time integral in the form

a(p) = −i
∫ ∞
−∞

e
iIpt+ i

2

∫ t
t0

(p+A(τ))2dτ 〈p + A(t)|r · F(t)|ψg〉 dt. (1.13)

(Here we have set Ip = −Eg > 0 for convenience, extracted the explicit phase and plane
wave |p + A(t)〉 from the Volkov state, and asked for the amplitude at t → ∞ after the
pulse is over.) This is, essentially, the main final answer from the Keldysh-style SFA,
though we will analyse it further below.

1.3.5 Imaginary time and trajectory language

The result in (1.13) closes an impressive gap, by taking the full TDSE and reducing it to
a single integral per final momentum p, so it can be queried directly and easily. However,
it can still be simplified considerably by suitably modifying the integration path into the
complex plane.

We will analyse this in more detail in chapter 2, but it is easy to see that the integral
is highly oscillatory, since it includes a factor of eiIpt being integrated on the scale of
several laser cycles, and we are working in the regime where ω � Ip. (There is an
additional average factor of eiUpt coming from the kinetic term of the phase, which is
even larger for γ < 0, but this only increases the severity of the problem.) This makes
the numerical integration of (1.13) challenging, since one the final value comes through
heavy cancellations, so one needs to compute each lobe to very high accuracy to get only
moderate precision on the final result, or use sophisticated integration algorithms that
attempt to account for this.

The most efficient approach, however, is to recur to the tools of complex analysis in
the form of the saddle-point approximation. We will explain this in depth in chapter 2
(and there are good reviews in Refs. 34 and 36), but the essence is that one can modify
the integration path of (1.13) away from the real axis in a way that turns the oscillatory
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exponential
e−iS(p,t) = exp

(
iIpt+ i

2

∫ t

T
(p + A(τ))2 dτ

)
(1.14)

into a series of gaussian bumps with a flat phase, which essentially reduce to the contri-
butions from a discrete series of points at the top of those gaussians. These are the saddle
points ts of the exponent S(p, t), which satisfy the core saddle-point equation

∂S

∂t
(p, ts) = 0, (1.15)

which make the phase stationary. In addition, a quick look at S(p, t) shows that it is
the kinetic action of an electron in the laser field, so the condition (1.15) is a form of
the principle of stationary action (and, indeed, the connection to Feynman’s path integral
formalism can be made explicit and rigorous [53]).

The result, then, is an approximation to the ionization yield a(p) in the form of the
sum of the integrand over a discrete collection of saddle points ts, chosen by the ability to
deform the integration path to reach them, in the form

a(p) =
∑
ts

√
2π

i∂2S/∂t2(p, ts)
e−iS(p,ts) 〈p + A(ts)|r · F(ts)|ψg〉 . (1.16)

More appealingly, this form also gives us a compelling physical picture which we can just
read off: the electron, originally in the ground state |ψg〉, performs a transition at a time
ts through the laser coupling r ·F(ts) to a continuum state with initial kinetic momentum
p + A(ts) (which, moreover, can be shown to have vanishing velocity along the laser
polarization), and it then propagates classically accruing action exactly as a free electron
in the laser field, via

S(p, t) = −Ipt−
1
2

∫ t

t0
(p + A(τ))2 dτ, (1.17)

with a factor of
√

2π
i∂2S/∂t2(p,ts) as a remainder of the time integration. There will be,

in principle several of these trajectories, and we simply add their probability amplitudes
as usual. Each such factor, in turn, can be directly interpreted as coming from a single
trajectory ionized at time ts and evolving with velocity v(t) = p + A(t).

There is a problem, of course, and it is that the saddle-point times ts generally do not
lie on the real axis, and that therefore we do need to modify the integration path in (1.13)
to reach them. This is not very problematic when we are talking about the amplitudes –
they are just some mathematical function in a convenient and compact form – but it raises
some serious conceptual issues when we attempt to understand each individual term in
the sum as corresponding to a classical trajectory. What does it mean for an electron to
be ionized at a complex time? What is the physical meaning of that ionization time, and
can it be measured experimentally? What does the trajectory look like, and what does
it mean physically? These questions have plagued the field since Keldysh first raised the
issue [27], and they do not yet have satisfactory answers.

The usual way of understanding the complex ionization times ts is to get away from
them as fast as possible: that is, if we need to visualize the passage of time for the electron
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from its ionization at ts = t0 + iτT, we normally first take it straight down to the real part
t0 = Re(ts), and we can then take it along the real axis more normally, as shown in Fig. 1.2.

Figure 1.2: Standard contour for understanding trajectories in complex time going from
the complex ionization time ts to its real part t0 and then along the real axis until the final
detection at a large, real time.

This has the advantage of clearly delineating the roles of each part of the contour,
and it matches rather well our understanding of how tunnel ionization should work: the
downwards part of the path takes place in complex time, so S(p, t) will be complex and
e−iS(p,t) will be a strong modulation on the amplitude; similarly, on the classical propaga-
tion part the velocity and action are now real, and everything behaves much as Feynman
originally described it, with a (restricted) set of classical trajectories that are eventually
added with probability amplitude e−iS(p,t). Even better, the ‘tunnel exit’ in this formalism,∫ t0
ts

[p + A(t)] dt, can be shown to reduce to the usual Ip/F in the quasistatic γ � 1 limit.
In addition to being very appealing, this classical understanding very often works,

and can be very effective. One very pervasive way to implement this is to use the above
formalism purely to obtain the tunnelling rate down to the real axis, and then to completely
forget about quantum mechanics: to consider (1.16) as describing the emergence at time
t0 of an electron with zero longitudinal velocity with probability

∣∣∣∣∣
√

2π
i∂2S/∂t2(p, ts)

〈p + A(ts)|r · F(ts)|ψg〉
∣∣∣∣∣
2

× e2 Im(S(p,ts)), (1.18)

and then to propagate these trajectories classically, either under the laser driving only
or also including the effect of the ionic potential.∗ This method, known generally as the
classical-trajectory Monte Carlo (CTMC) approach, can be very effective, and we will
meet it again in chapter 6.

However, this method, and others like it, is essentially only a model: it is grounded
in a calculation from the TDSE, but eventually it departs from it and works by analogy,
introducing the constructs that look appropriate (like, for example, the effect of the ionic
potential on the trajectory) in a form that fits into its environment, and hoping for the
result to match experimental measurements. As a model, the CTMC approach has a
number of successes (as do its several analogues), but it is very thinly grounded on the
Schrödinger equation.

∗Generally, this is changed to the ADK rates [54], to include the effect of the Coulomb potential during
the tunnelling step, but this does not change the fundamentals.
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This is, in a way, one of the key problems that this thesis tackles: can one derive a
trajectory-based model, which allows one among other things to describe the interactions
with the ion’s potential, directly from the Schrödinger equation, and without proceeding
by analogy or similar leaps? As we will see, this is indeed possible, but it comes at the
cost of having a complex-valued trajectory once the time reaches the real axis. Moreover,
this imaginary component of the position is retained all the way to the detector, it has a
very strong effect on the interaction with the ion, and it ultimately makes the standard
contour shown in Fig. 1.2 inadmissible and essentially meaningless.

In essence this is because the imaginary component of the position combines with
the Coulomb potential of the ion, −1/

√
r2, to produce branch cuts in the complex time

plane that severely restrict the paths the trajectory can take, and we will show how to
navigate these branch cuts to obtain suitable paths in the complex time plane. This
method will then allow us to explain intricate structures that appear in the low energy
region of ATI spectra. More recently, the inclusion of this imaginary component of the
position has also been shown to be crucial in explaining higher-energy phenomena [55], in
the intersection of direct and rescattered ATI electrons, with our method of branch cut
navigation successfully allowing the evaluation of correct trajectories, at the expense of
the foot t0 of the standard contour as a central concept of the theory.

1.3.6 Including the Coulomb field of the ion

Coming back to the Keldysh result (1.16), it is also important to remark that, for all
its conceptual and quantitative successes, the Keldysh theory does have some serious
limitations. One of them is the limitation to relatively weak fields limited by F � 1 a.u.,
so the theory only works in the tunnelling regime, where the barrier still exists, and it fails
for over-the-barrier ionization where the potential in Fig. 1.1(b) dips below the energy
of the ground state, liberating the wavefunction and ensuring very swift and complete
ionization.

(In general, however, this is not too hindering a limitation, since if a pulse goes above
that intensity then the leading edge, which still falls within the tunnelling limits, is very
likely to saturate the ionization, presenting the higher fields in the middle of the pulse with
a harder target with a higher ionization potential that is often still inside the tunnelling
regime, now modified to F � (2Ip)3/2.)

More seriously, on the other hand, the Keldysh theory is limited to only short-range
potentials, and it produces very poor quantitative results when applied to charged systems
with an asymptotic Coulomb potential, often out by several orders of magnitude (even if
the shape of the spectrum is relatively accurate). As such, one of the key goals of the
theory of strong-field physics is to have an analytical theory – ideally sharing as much of
the SFA’s conceptual and computational simplicity – that includes this Coulomb potential.

Several approaches have extended the Keldysh method to include the Coulomb poten-
tial, most notably by A. M. Perelomov, V. S. Popov and M. V. Terent’ev [31–33] for a
nonzero charge, known as the PPT model, and later simplified by M. Ammosov, N. Delone
and V. Krainov [54], dealing with arbitrary initial states, giving the so-called ADK rates
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that extend well to the case of molecules [56]. However, extending these methods to ob-
servables beyond the ionization rate has proved challenging, and though there are several
interesting methods available there is as yet no completely satisfactory theory for this.

PPT methods

The core method for including the Coulomb field into the SFA ionization rates was provided
by Perelomov et al. in Ref. 32, and it can be simplified a good deal by phrasing it in
trajectory language Ref. 33, which can then be modified to include the Coulomb field in
a relatively ad-hoc way. Using integration by parts, one can rephrase the action (1.14) as

S(p, t) = −Ipt+ 1
2

∫ t

T

[
v(τ)2 + r(τ) · v̇(τ)

]
dτ

= −Ipt+
∫ t

T

[1
2v(τ)2 − r(τ) · F(τ)

]
dτ, (1.19)

where r(t) =
∫ t
tref

[p + A(τ)] dτ and v̇(t) = dA
dt = −F(t), and this is explicitly in the form

of a lagrangian function L = 1
2v(τ)2−r(τ) ·F(τ) with an explicit potential. To include the

Coulomb potential here, and working in analogy to our original hamiltonian from (1.6),
we can simply expand this to

L = 1
2v(τ)2 −

[
r(τ) · F(τ) + V (r(τ))

]
. (1.20)

This requires some amount of care, since integrating
∫
V (r(τ))dτ can produce infinities

coming from the 1/r singularity at the origin, but in general these can be appropriately
regularized. However, it is relatively challenging to extend this to a full photoelectron
momentum spectrum, and the theory misses some non-adiabatic tunnelling effects, which
come from the temporal variation of the barrier, for Coulomb potentials. As such, in
general the use of PPT methods in the recent literature is mostly seen in calculations of
total rates or, through the extension to ADK [54] and molecular ADK [56] to arbitrary
atomic and molecular states, respectively, for the calculation of instantaneous tunnelling
rates, down to the tunnelling ‘foot’ of the integration, for CTMC calculations.

Coulomb-Corrected Strong-Field Approximation

The ideas of the PPT method reach their full fruition in what’s generally known as
Coulomb-corrected SFA methods (CCSFA), first introduced by S. V. Popruzhenko and
co-workers in Refs. 57–60. In essence, these methods take the SFA expression for the
ionization amplitude,

a(p) =
∑
ts

√
2π

i∂2S/∂t2(p, ts)
e−iS(p,ts) 〈p + A(ts)|r · F(ts)|ψg〉 , (1.16)

and retain its form, modifying only the action, both in terms of its explicit form as well
as the trajectory that it is evaluated on.

In general, this usually means expanding to first order about the laser-driven system,



1. Introduction 31

with trajectory r0(t) =
∫ t
tref

[p + A(τ)] dτ and the action (1.19), to include the Coulomb
potential in the latter via

Sccsfa(p, t) = −Ipt+
∫ t

T

[1
2 ṙ(τ)2 − r(τ) · F(τ)

]
dτ −

∫ t

T
V (r(τ))dτ, (1.21)

and to expand the trajectory to r(t) = r0(t) + r1(t), where r0(t) is the laser-driven trajec-
tory and, in lieu of the full equation of motion

r̈(t) = −F(t)− Zr(t)
‖r(t)‖3 , (1.22)

it is often sufficient to take only a first-order correction,

r̈1(t) = − Zr0(t)
‖r0(t)‖3 . (1.23)

These methods can be put together in different combinations (so, for example, the correc-
tion to the action can be left only as −

∫ t
T V (r0(τ))dτ , or the corrections to the trajectory

may be discarded), depending on the conditions of the problem.
In addition to this, the CCSFA methods typically require the canonical momentum

p′ at ionization to be different to the final momentum p at the end of the pulse, because the
equations of motion (1.22, 1.23) do not conserve the canonical momentum as the laser-
only evolution does. This poses a problem, because when we evaluate a photoelectron
momentum spectrum we usually fix a final momentum p, and we want to calculate its
ionization amplitude; this is an inverse problem (given a final momentum, find the initial
conditions that lead to it), but the CCSFA postulates are posed as a forward one (given
initial conditions they produce the final momentum). This can be solved via a ‘shotgun’
approach to the momentum, by seeding a large number of initial conditions and seeing what
their final momentum is. The procedure requires some care (such as when calculating the
interference between trajectories whose final momenta almost, but do not quite, match),
but it can be done with a framework that is essentially as efficient and flexible as the
original SFA.

A somewhat more problematic issue, however, is the setting of the initial conditions for
the trajectories. The SFA trajectory language tells us a fair amount about the trajectories,
most notably through their velocity v(t) = p + A(t), but it is mute about where the
trajectory starts. This is required information to compute the trajectory via the equations
of motion (1.22, 1.23), and it is similarly necessary to compute the Coulomb action in (1.21)
even if only the zeroth-order trajectory is used, via −

∫ t
T V (r0(τ))dτ .

Thus, the CCSFA method requires an initial condition to be put in externally, which
can be done but it means that the formalism is firmly on the class of a model that
proceeds by analogy. It is certainly very successful, and it correctly explains, among other
things, the Coulomb-enhanced ionization rate [59] and the breaking of the SFA’s excessive
symmetry in an elliptically polarized field [57, 58]. However, it does not derive directly
from a TDSE, which makes it desirable to find an analogous theory that does proceed
from first principles and arrives at a similar trajectory-based intuitive understanding of
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the ionization process.

Coulomb-Volkov Approximation

On a separate approach to the inclusion of the Coulomb potential is what is known as
the Coulomb-Volkov Approximation (CVA) [61, 62], which essentially consists of replacing
the Volkov states in the SFA results – both the integral version (1.13), and from there to
the saddle-point result (1.16) – with Coulomb-modified scattering waves that incorporate
spatial aspects of the Coulomb waves

∣∣∣Ψ(−)
p
〉
in addition to Volkov-state behaviour; more

specifically, of the form

〈
r
∣∣∣Ψ(CV)

p (t)
〉

= e
iA(t)·r− i

2

∫ t
−∞ v(τ)2dτ 〈r

∣∣∣Ψ(−)
p (t)

〉
(1.24)

= eπ/2p

(2π)3/2 Γ
(

1 + i

p

)
1F1

(
− i
p
, 1,−i(pr + p · r)

)
eip·reiA(t)·re

− i
2

∫ t
−∞ v(τ)2dτ

,

where 1F1 is a confluent hypergeometric function [63, chap. 13]. The Coulomb-Volkov
approximation is, again, a relatively successful model, explaining things like Coulomb fo-
cusing and angular distributions at low energy in the multiphoton regime [64]. However,
the CVA is problematic, partly because it is difficult to extend to more complicated poten-
tials, and partly because the relatively ad hoc introduction of

∣∣∣Ψ(CV)
p (t)

〉
makes it difficult

to gauge the approximation’s conditions of validity [34].

Analytical R-Matrix theory

The work in this thesis is based on a separate approach to the inclusion of Coulomb effects
into SFA-like theories, known as the Analytical R-Matrix (ARM) theory of ionization [65–
68]; we will build it in detail in chapter 2, but we present here a sketch of the fundamentals.

The basic idea is to track the origin of the SFA trajectory language, which essentially
comes from the e−iS form of the Volkov continuum wavefunctions (1.9). As such, if one
wants to expand this trajectory language to include the effects of the Coulomb potential
on the continuum electron, the best place to do it is directly at the level of its original
wavefunction.

Fortunately, this can indeed be done, in a formalism known as the eikonal-Volkov
approximation (EVA) [69, 70]. In essence, this entails adding a phase correction to the
Volkov states (1.9), of the form〈

r
∣∣∣Ψ(EVA)

p (t)
〉

= eiSEVA(p,r,t)/~
〈
r
∣∣∣Ψ(V)

p (t)
〉
, (1.25)

and then solving the full Schrödinger equation (1.6), with the Coulomb field taken as a
perturbation, giving a solution as a series in ~ (which is of course subsequently reverted
to ~ = 1). The result, not surprisingly, is very similar to the CCSFA action, as an integral
of the ionic potential V (r) over a trajectory,

SEVA(p, r, t) = −
∫ t

T
V (rL(τ ; r,p, t))dτ, (1.26)

http://dlmf.nist.gov/13


1. Introduction 33

where now the trajectory starts at the probing point r at time t, and is driven exclusively
by the laser until it reaches an asymptotic canonical momentum p:

rL(τ ; r,p, t) = r +
∫ τ

t

[
p + A(τ ′)

]
dτ ′. (1.27)

This gives us, then, a trajectory-based Coulomb-corrected continuum wavefunction,
though in the language of CCSFA it is only corrected to first order in the action, and
it is taken to zeroth order on the trajectory. As we will discuss in chapter 5, it would
be desirable to have trajectory-based Coulomb-corrected continuum wavefunctions with
higher order corrections in the trajectory, but this is a very challenging problem which
does not appear particularly accessible with currently available tools. On the other hand,
the action (1.26) can be extended directly to any suitably regular atomic or molecular
potential.

The problem with the eikonal-Volkov wavefunctions, however, is that they are only
valid away from the Coulomb singularity at the nuclei, so they cannot be applied directly
to take a transition matrix element with the ground state, as in (1.13) and (1.16), which
lives near the nuclei.

To solve this, ARM theory borrows a tool from the numerical toolbox, known as the
R-Matrix theory [71–75], which consists of splitting space using an artificial spherical
boundary at a reasonable distance from the molecular core. For numerical approaches,
this allows for the use of different numerical methods inside and outside; in our analytical
context, it will afford us the use of different approximations – eikonal-Volkov states on the
outside, and eigenstates of the laser-free system inside – on either region, with a suitable
matching procedure at the boundary.

As we will see, the boundary matching can be combined with the WKB expansions
for the inner eigenstates [76] to simplify the boundary matching into a single form factor,
reducing the trajectory in use from the r-dependent (1.27) into simply the laser-driven
trajectory starting from the origin

rL(t) =
∫ t

tref
[p + A(τ)] dτ, (1.28)

with the reference time tref chose as precisely the complex ionization time ts in the saddle-
point sense. The resulting theory is flexible and offers clear insight into the dynamics, and
it arises directly from the TDSE without the need of leaps by analogy. This matching
procedure will then lead directly to the complex component of the position, which we will
explore in chapter 5 and relate to experiment in chapter 6.

The ARM theory was introduced by L. Torlina and O. Smirnova in Ref. 67, which shows
that it reproduces the PPT ionization rates in the tunnelling γ � 1 limit, but incorporates
the effects of non-adiabatic tunnelling. A companion paper shows that the theory can be
extended to multi-electron dynamics [68], with said formalism examined by the author in
Ref. 1, the results of which are presented in chapter 3. On a more fundamental track,
comparisons between the Coulomb corrections as implemented by ARM theory can be
compared with high-precision single-electron TDSE simulations [77], giving a close match
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to the numerical experiment.
The first nontrivial application of the ARM theory was the precise calculation of

Coulomb-induced time delays in circularly polarized pulses, both for long pulses [78, 79]
and for few-cycle configurations [80], with the latter known generally as the ‘attoclock’
experiment [81], showing that while it is possible for experiment to bear in on the question
of whether the Keldysh ionization time t0 is physically meaningful and measurable, the
presence of Coulomb and other effects make those measurements extremely delicate.

In addition to this, the calculations for circular polarizations also show that nonadia-
batic tunnelling effects also influence the ionization from different p orbitals in noble gases,
with the counter-rotating p− ionizing faster than the co-rotating p+ [78], and that this
can be used in atoms with a strong spin-orbit coupling to implement a so-called ‘Larmor
clock’ [82, 83], which can be used to probe the temporal features of the ionization process
in a pump-probe configuration. More recently, the ARM method has also been used to
analyse a similar time delays within high-order harmonic generation [84].

Other related approaches

It is also important to point out that several of the ideas used by the Analytical R-Matrix
theory are shared by a broad collection of other approaches to strong-field problems across
the board, as well as more general methods in atomic physics and quantum mechanics.

The use of complex-valued positions, for example, has a long history in the analysis
of quantum mechanical problems, particularly in the analysis of unstable and decaying
systems. Here one is often tasked with finding solutions with asymptotic behaviour of the
form ψ(r) ∝ eikr, which is hard to deal with numerically because it does not decay; by
contrast, extending the coordinate r into the complex plane by rotating it into r 7→ reiθ

turns the oscillatory wavefunction into the form ψ(r) ∝ eik cos(θ)re−k sin(θ)r, adding in an
exponential decay that confines the calculation. This method, known generally as Exterior
Complex Scaling (and variations on that theme), has been in use for a long time [85], and
it is at the core of several state-of-the-art numerical methods [48, 86].

Similarly, explicit complex-valued trajectories have also appeared multiple times in the
literature. For example, these appear when the standard semiclassical methods are taken
systematically with respect to variations in the amplitude as well as the phase [87–89]; they
also provide useful ways of understanding scattering theory in the semiclassical regime [90–
92], and beautiful physics in their own right [93]. Within strong-field physics, complex
trajectories have indeed been used even within the stricter confines of the SFA [53, 94, 95],
although for pure SFA theories the imaginary part of the position, while present, loses
some of its importance.

The method of imaginary times, on the other hand, has very close links to the Landau-
Dykhne and Landau-Zener formalisms for transitions in a two-level system [49, 96, 97], as
well as to the theory of instantons [98] which uses classical trajectories over complex time
to explain features of the time-independent Schrödinger equation in potentials that involve
tunnelling barriers, like the double well, and whose applications stretch from statistical
mechanics to string theory.
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On a more concrete side, the R-Matrix theory also uses a relatively general principle of
strong-field physics – the idea that the laser and the ion can both be the driving influence
on the electron, but that the sectors where they do so are separated in space.

One approach that makes this spatial split principle explicit is the Time-Dependent
Effective Range theory [99, 100], which focuses on short-range potentials. In this case, the
exact solutions of the problem are also known away from the origin, being essentially the
motion of a free particle under the laser field. More interestingly, it is possible to match
these free-electron laser-driven states to the bound states of short-range potentials, giving
a clean analytical approximation that can be made arbitrarily accurate.

Using these ideas it is then possible, among other things, to provide a much better
account of the internal dynamics induced by the laser on the bound states of the system,
significantly improving on the PPT account of similar situations [100], and to provide
a detailed description of quantum corrections to the cut-off energies of the rescattering
plateaus of high-order ATI [101], for which we will find analogues in chapter 6.

More generally, however, the spatial dependence of the relative importance of the
atomic and external fields is an important idea in strong-field physics, but it is typically
left as a general aspect of the mindset, while more specific approximations (like the Born
scattering of the Improved SFA [52] or the projector-based separation of the so-called
SFA+ theory [51]) bear the brunt of the work.

1.4 Structure of this thesis

This thesis is divided in two parts, with Part I dealing largely with ionization phenomena
and Part II dedicated to high-order harmonic generation.

• The ionization calculations start in chapter 2, which lays the groundwork for the
Analytical R-Matrix theory that we will build on and analyse in the rest of Part I.
In addition we present, in section 2.3, original results for the ionization of molecules,
deriving analytical formulas for the ARM factor of a model molecular orbital.

• Chapter 3 looks in more detail at molecular ionization, taking on the analysis of
multi-electron ionization mechanisms, presenting in more details the results of Ref. 1.
We look for, and identify, geometrical traces of these multi-electron ionization mech-
anisms in the photoelectron angular distributions, and we relate these to under-the-
barrier interactions between the photoelectron and the rest of the ion.

• Chapter 4 analyses one of the crucial ingredients of the multi-electron ARM calcula-
tions, the correlation interaction potential 〈Vnm(r)〉 = 〈n|Vee(r)|m〉 that is responsi-
ble for causing transitions between the ionic states |m〉 and |n〉, as a function of the
photoelectron position r, and which needs to be analytically continued to be evalu-
ated on the complex-valued trajectory. We will examine this analytical continuation
for several relevant models, and show that these models can agree surprisingly well,
for positions that are ‘real enough’, but that they can also disagree catastrophi-
cally, at points that are ‘too imaginary’, and we will provide a simple criterion to
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distinguish between the two that can be used when handling the complex-valued
trajectory.

• Chapter 5 examines this ARM complex-valued trajectory rL(t) =
∫ t
ts

[p + A(τ)]dτ
in detail, focussing on single-electron, universal effects, mostly following Ref. 4. We
examine where and why it is complex-valued, and how this affects the interaction
with the ion. We show that the imaginary part of the trajectory combines with
the Coulomb potential to imprint branch cuts on the complex time plane which
cross the standard contour, and which need to be clearly managed. We introduce
the key concept for handling these branch cuts, termed closest-approach times and
defined by equations of the type rL(tCA) · v(tCA) = 0, and we show how they can be
implemented to successfully navigate any given branch cut landscape. (Moreover,
this also keeps the trajectory inside the ‘real enough’ region described in chapter 4.)
In addition, we show that the closest-approach times, for both real- and complex-
valued trajectories, encode a rich geometry with intricate topological structures,
which we explore in detail.

• Chapter 6 then implements this analysis, following Refs. 4 and 5, to show how a
feature known as the Low Energy Structures of above-threshold ionization emerges
from this formalism through ‘soft recollisions’ – trajectories which approach the ion
at low velocity – and show that a similar, more recently discovered (Near-)Zero
Energy Structure can also be explained with an equivalent kinematic mechanism.

• After this we turn to high-order harmonic generation in Part II, starting with a brief
introduction to the topic in chapter 7, presenting some more background material,
as well as the construction of the standard formalism (of which the author’s imple-
mentation is openly available in Ref. 8) that we will use to calculate the harmonic
emission.

• Chapter 8 examines the conservation of spin angular momentum within high-order
harmonic emission when seen as a parametric process, following the analysis of
Refs. 2 and 3, using ‘bicircular’ fields to probe the emission: two circularly po-
larized counter-rotating fields, at different frequencies, which produce circularly po-
larized harmonics. We analyse the behaviour of the emission as the driving fields are
deformed from circular to elliptical, and we describe a photon-picture model that
explains the harmonic emission as a parametric process that conserves spin angular
momentum on a per-channel basis.

• Chapter 9 addresses a fundamental limitation in extending harmonic emission to-
wards higher frequencies: a breakdown in the dipole approximation as the driving
wavelength increases, caused by the growing role of the driver’s magnetic field as the
photoelectron’s velocity increases, and which can completely quench the harmonic
emission. We introduce, as in Ref. 6, a method to probe, demonstrate and cancel
these magnetic effects, based on a variation of the bicircular fields of chapter 8: we
use two counter-rotating circularly polarized pulses, at the same frequency but in
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non-collinear directions, to generate an unusual forwards-elliptical field, where the
minor axis of the polarization ellipse is in the direction of the magnetic Lorentz
force. We then show that this method can recover the harmonic emission from the
magnetic-force quenching, and moreover that it can be used to demonstrate the
presence of the effect, using currently-available light sources, through the emission
of even harmonics of the drivers.

• Finally, in Part III, we present a summary of our results, by way of conclusion, in
chapter 10.

This thesis was submitted for examination on September 9, 2016. The published ver-
sion, including examiner corrections, was completed and published on November 30,
2016, and it is available at Spiral, the official Imperial College London thesis and eprint
repository, as handle:10044/1/43538. This version, which includes several minor fixes,
was created on October 29, 2021. Any further updates and fixes will be published at
github.com/episanty/PhD-Thesis, and a list of changes between the published version
and the final updates is available at this link.

http://hdl.handle.net/10044/1/43538
https://github.com/episanty/PhD-Thesis
https://github.com/episanty/PhD-Thesis/commits/master
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Chapter 2

Analytical R-matrix theory

In this chapter we lay the groundwork of the Analytical R-Matrix(ARM) theory of pho-
toionization that we will use throughout Part I of this thesis, following the original pre-
sentation of the theory [67, 68] and the formulation in the author’s MRes report [7]; for
a more compact presentation we refer the reader to Refs. 4 and 77. We present the basic
framework in section 2.1, and then specialize this to the single-electron case in section 2.2,
and we develop the multi-electron formalism further in section 2.4. We also present,
in section 2.3, original results for the ARM shape factor of molecules, obtaining simple
analytical formulas for model asymptotic molecular orbitals.

The core of the R-Matrix method is the separation of space into an inner region and an
outer one by a spherical boundary, which enables one to apply, in the two different regions,
different methods and approximations, where they are relevant. In general, this is often
done when there is a complex many-body system which is, nevertheless, well approximated
as a single-particle problem outside of the given region.

The R-matrix method was developed by Wigner [71] as a technique to describe nuclear
reactions [72], and it was adapted in atomic physics to deal with collisions of slow electrons
with atoms [73] and molecules [74]. In a strong-field context, the R-matrix as a numerical
method permits a fuller description of multi-electron effects inside the molecule [75], while
at the same time handling strong-field phenomena whose large grids prevent the use of
multiple electrons in the outer region.

Figure 2.1: R-matrix splitting of space into an inner spherical region of radius a and an
outer region outside that sphere.

41
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The Analytical R-Matrix method makes use of this spatial separation, not to imple-
ment different numerical methods on the two different regions, but rather to use different
approximate analytical methods in their regions of validity. In particular, the solutions
of the Schrödinger equation driven by the laser field – the Volkov states we visited in the
Introduction – can be augmented to include the effect of the interaction with the parent
ion through the eikonal-Volkov approximation [69, 70], but this breaks down near the ion,
so that solution needs to be fenced off from its singularities, where the normal atomic or
molecular eigenstates can be used. Having done this, multi-electronic effects can then be
built in by taking a single electron to be in the outer region and using the eigenstates of
the ion as a basis, to which the outer electron is correlated.

In this chapter, we will show how these tools are built and come together to produce
the theory: the separation of space, the different ingredient solutions, their integration,
the encapsulation of the effect of the inner wavefunction on the outer one, and the use of
the saddle-point approximation to produce clear physical pictures for the process.

2.1 Basic framework

2.1.1 Splitting space

The separation of space into two parts, while conceptually simple, does pose some technical
challenges that need to be addressed with the right language. Naively, we have an initial
Hilbert space which describes wavefunctions over the whole of space,

H = {ψ : R3 → C |
∫
|ψ(r)|2dr <∞} (2.1)

and we want to separate it into functions from inside and outside the ball B(a) of radius a,

H< = {ψ : B(a)→ C |
∫
|ψ(r)|2dr <∞} (2.2a)

H> = {ψ : R3 \B(a)→ C |
∫
|ψ(r)|2dr <∞}, (2.2b)

using the projectors Π≶ : H → H≶. We want to deal with the projected wavefunctions
Π≶|ψ〉 separately, so we simply project the Schrödinger equation as i d

dt Π≶|ψ〉 = Π≶H |ψ〉,
and we reformulate it in terms of the projected wavefunctions.

The technique is most easily illustrated, for simplicity, in one dimension (though of
course it extends directly to the radius in three dimensions. Concentrating for the moment
on the outer region, we’re interested in the evolution of Π> |ψ〉, which is given by

i
d
dtΠ> |ψ〉 = Π>H|ψ〉 = H Π>|ψ〉+

[
Π>,

1
2 p̂

2
]
|ψ〉 , (2.3)

since the kinetic energy 1
2 p̂

2 does not commute with the spatial projection. To find the
commutator

[
Π>,

1
2 p̂

2
]
that appears in the time evolution, the quickest route is to set
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Π> = θ(x̂− a), and to use the canonical commutation relation in the form

p̂f(x̂) = f(x̂)p̂− if ′(x̂). (2.4)

Thus, we look at

p̂2θ(x̂− a) = p̂
(
θ(x̂− a)p̂− iθ′(x̂− a)

)
= −ip̂δ(x̂− a) +

(
θ(x̂− a)p̂− iθ′(x̂− a)

)
p̂

= − (ip̂δ(x̂− a) + δ(x̂− a)ip̂) + θ(x̂− a)p̂2, (2.5)

which then gives us the commutator as[
θ(x̂− a), p̂2

]
= ip̂δ(x̂− a) + δ(x̂− a)ip̂, (2.6)

and which we encapsulate using the notation

L̂0 :=
[
θ(x̂− a), 1

2 p̂
2
]

= ip̂δ(x̂− a) + δ(x̂− a)ip̂
2 , (2.7)

which is known as the Bloch operator, after Claude Bloch [102].
With this commutator ready, the Schrödinger equation for the outside component reads

i
d
dtθ(x̂− a) |ψ〉 = Hθ(x̂− a) |ψ〉+ L̂0 |ψ〉 , (2.8)

which we can further split into

i
d
dtθ(x̂− a) |ψ〉 =

[
H + L̂0

]
θ(x̂− a) |ψ〉+ L̂0θ(a− x̂) |ψ〉 . (2.9a)

Similarly, there is an identical equation for the inner wavefunction,

i
d
dtθ(a− x̂) |ψ〉 =

[
H − L̂0

]
θ(a− x̂) |ψ〉 − L̂0θ(x̂− a) |ψ〉 , (2.9b)

and the two make up a pair of coupled inhomogeneous Schrödinger equations: each is
governed by its own hamiltonian, altered with the addition of a Bloch operator to keep the
per-component hamiltonian hermitian, and with coupled source terms ±L̂0θ(∓(x̂−a)) |ψ〉
that give the flow of probability from either region into the other.

In general, the coupled Schrödinger equations for the inner and outer regions are
usually fine-tuned by the addition of a separate hermitian factor, to make the full Bloch
operator read

L(±)(a) = ±L̂0 ± δ(x̂− a)b(x̂). (2.10)

Ultimately we will choose b(r) = (1 − b)/r, where b is a constant, as it will significantly
simplify the algebra, but for now we leave it arbitrary, and obtain our coupled Schrödinger
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equations in useful form:
i

d
dt |ψ>〉 =

[
H − L(−)(a)

]
|ψ>〉 − L(−)(a) |ψ<〉 ,

i
d
dt |ψ<〉 =

[
H − L(+)(a)

]
|ψ<〉 − L(+)(a) |ψ>〉 .

(2.11a)

(2.11b)

When solving these equations numerically, one usually keeps close track of both hamil-
tonians and both flow operators, and indeed in principle one can implement a full recollision
step in ARM theory by using the in-flow from the outer region into the inner one, though
this is as yet unexplored. For our purposes, however, it will be sufficient to look at the
evolution of the outer region, and keep the inner-region wavefunction at the ground state
of the neutral, essentially unperturbed, so |ψ<〉 ≈ |Ψg〉, and this will work as our source
term for the outer region.

We arrive, then, at the problem to be solved:

i
d
dt |Ψ(t)〉 =

[
H − L̂(−)(a)

]
|Ψ(t)〉 − L̂(−)(a) |Ψg〉, (2.12a)

|Ψ(0)〉 = |Ψg〉 . (2.12b)

This problem can be solved formally, if one has access to the full propagator U(t, t′)
corresponding to the N -electron hamiltonian H, satisfying i∂tU(t, t′) = H(t)U(t, t′) under
U(t′, t′) = I, in which case the solution obeys

|Ψ(t)〉 = −i
∫ t

−∞
dt′ U(t, t′)L̂(−)(a)

∣∣Ψg(t′)
〉
. (2.13)

Here we will take the state |Ψ(t)〉 inside the integral to be the neutral’s ground state
|Ψg〉, with ionization potential Ip and energy Eg = −Ip: |Ψg(t)〉 = e+iIpt |Ψg〉. This is the
solution of the Schrödinger equation for the inner region obtained by ignoring backflow
from the outer region and polarization of the neutral by the laser field; both of these effects
can be reinstated later if required. As such, equation (2.13) represents a concrete Ansatz
for the wavefunction we are looking for, and the problem now becomes that of obtaining
suitable approximations for the propagator U(t, t′).

2.1.2 The hamiltonian

We wish to consider ionization of an atom or molecule by a strong, long-wavelength laser
field, and we want to consider multi-electron effects. As such, the hamiltonian for the
problem includes electrostatic forces for N electrons, with nuclei of charge Zm at Rm, and



2. Analytical R-matrix theory 45

their length-gauge interaction with an external laser field F(t):

HN = TNe + V N
C + V N

ee + V N
L , where (2.14a)

V N
C = −

∑
m

N∑
i=1

Zm
‖Rm − ri‖

, (2.14b)

V N
ee =

N∑
i>j

1
‖ri − rj‖

, (2.14c)

V N
L =

N∑
i=1

F(t) · ri. (2.14d)

Once the ionized electron leaves the molecule, the total hamiltonian is split into the
N − 1-electron ionic hamiltonian HN−1, formally identical to the neutral one, and the
hamiltonian for the leaving electron,

He := HN −HN−1 (2.15)

which in particular contains the entangling operator Vee = V N
ee −V N−1

ee = ∑N−1
i=1 ‖ri−r‖−1,

the Coulomb repulsion between the leaving electron and the ion.
This hamiltonian can therefore be split into three specific components: the ionic core

electrons in the inner region and their polarization by the laser field, the ionized electron
and its strong driving in the outer region by the laser field, and their entangling interaction.
We will add the entangling interaction in perturbatively, after developing approximate
analytical propagators for each factor.

2.1.3 Eikonal-Volkov states

We begin by focusing on the ionized electron, which will be driven by a hamiltonian of
the form

He = 1
2 p̂2 + F(t) · r̂ + V (r), (2.16)

where V (r) is an electrostatic interaction with the ionic core, and which is considered weak
in the outer region. If one ignores this electrostatic interaction, leaving the laser-driven
hamiltonian HL = 1

2 p̂2 +F(t) · r̂, the Schrödinger equation has well-known exact solutions
known as Volkov states [103], as we met them earlier in (1.9),

〈
r
∣∣∣k(V)(t)

〉
= 1

(2π)3/2 e
i(k+A(t))·re−

i
2

∫ t
T

(k+A(τ))2dτ , (2.17)

defined in terms of the vector potential of the field A(t), which must obey F(t) = −dA
dt .

To include the interaction with the electrostatic potential V (r), we use the eikonal-
Volkov approximation [69, 70], which is an adaptation of the Wentzel-Kramers-Brillouin
(WKB) method to the V (r)-driven interaction-picture Schrödinger equation on top of the
Volkov states of (2.17): one posits a wavefunction modified by an amplitude and a phase,
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and then solves perturbatively for both. The result are the wavefunctions〈
r
∣∣∣k(EVA)(t)

〉
= 1

(2π)3/2 e
i(k+A(t))·re−

i
2

∫ t
T

(k+A(τ))2dτe−i
∫ t
T
V (rL(τ ;r,k,t),τ)dτ , (2.18)

with an added Coulomb phase e−iWC = e−i
∫ t
T
V (rL(τ ;r,k,t),τ)dτ in terms of the laser-driven

trajectory

rL(τ ; r,k, t) := r +
∫ τ

t

[
k + A(τ ′)

]
dτ ′ (2.19)

that starts at position r at time t and has asymptotic momentum k. The eikonal-Volkov
states are in general valid as long as the boundary radius a is far enough from the ion.

2.1.4 Ionic states

In addition to the continuum wavefunctions, in going from a single-active-electron ap-
proach to a multi-channel one where the ionized electron is entangled with the ionic core,
we also require an appropriate basis of solutions for the different channels of the core.
In particular, we want to solve the time-dependent Schrödinger equation in the inner re-
gion for the N − 1 electrons of the ion, i∂t|ΨN−1〉 = HN−1 |ΨN−1〉, potentially including
polarization effects induced by the external field.

To solve this problem, we choose the basis of instantaneous eigenstates of the ion,
which obey

HN−1(t) |n(t)〉 = En(t) |n(t)〉 (2.20)

at each instant t, and from which one can construct approximate TDSE solutions of the
form e−i

∫ t
En(τ)dτ |n(t)〉 as long as the laser frequency ω is smaller than the characteristic

energy spacing ∆E of the system.
In practice, this thesis will not address such polarization effects, but they can be in-

cluded if required, by diagonalizing the field hamiltonian on a constrained basis of atomic
or molecular eigenstates using their transition dipole moments as their interaction with the
field. It is interesting to note that when including polarization effects this approach does
extend to the complex-time formalism we will pursue later to apply the saddle-point ap-
proximation to temporal integrals, but this is not a trivial step: the real-time instantaneous
eigenstates of (2.20) do extend into the complex plane as analytic functions [91, 92], but
in general they will develop branch points at complex times t∗ where pairs of eigenvalues
become degenerate. One can then extract rich structure from these analytical functions
– including, among others, the Landau-Dykhne nonadiabatic transition rate between the
different states [92, 96].

For now, though, we can use the instantaneous eigenstates to extract the electrostatic
potential to be used for the eikonal-Volkov states, given by the self-consistent field

Un(r) := 〈n(t)| ⊗ 〈r|Vee |n(t)〉 ⊗ |r〉 . (2.21)

With this choice of potential for V (r), the eikonal-Volkov states satisfy the Schrödinger
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equation

i∂t |kn(t)〉 = Hn
e (t) |kn(t)〉 for Hn

e := 〈n(t)|HN −HN−1|n(t)〉 . (2.22)

There is, of course, an additional entangling component of Vee that goes beyond this self-
consistent part, and that will be dealt with separately as the potential driving the channel
mixing.

Finally, we can put together the instantaneous eigenstates and the eikonal-Volkov
states to get an appropriate resolution of identity,

1 =
∫

dk
∑
n

A |kn(t)〉 ⊗ |n(t)〉 〈kn(t)| ⊗ 〈n(t)|A (2.23)

where A is the anti-symmetrizing operator, which when applied to our formal solution
(2.13) gives us an equation,

|Ψ(t)〉 = −i
∑
n

∫
dk
∫ t

−∞
dt′ UN (t, t′)A

∣∣n(t′)
〉
⊗
∣∣kn(t′)

〉
×
〈
kn(t′)

∣∣⊗ 〈n(t′)
∣∣AL̂(−)(a) |Ψg〉 eiIpt

′
, (2.24)

that is ready for further work.

2.1.5 The Dyson orbital

To tackle our channel-specific formal solution (2.24), we begin with the transition matrix
element of the Bloch operator,

〈
kn(t′)

∣∣⊗ 〈n(t′)
∣∣AL̂(−)(a) |Ψg〉 . (2.25)

This expression hides two summations over the different electrons: one over which elec-
tronic Bloch operator acts on |Ψg〉, and one, induced by the anti-symmetrizing A, over
which electron is induced into the continuum state |kn(t′)〉.

We can, however, neglect the contribution from the non-diagonal, exchange-like terms,
in which an electron different from the one transmitted by the Bloch operator to the outer
region is projected into the continuum state. In terms of the characteristic momentum κ

of the ground state, with 1
2κ

2 = Ip, this can be ensured as long as κa� 1. This effectively
breaks the exchange symmetry – which is fundamentally due to the fact that in the outer
region the ionized electron is distinguishable from those left behind – and allows us to
choose which electron will tunnel out into the continuum state; this reduces the matrix
element to

〈
kn(t′)

∣∣⊗ 〈n(t′)
∣∣AL̂(−)(a) |Ψg〉 = N√

N

〈
kn(t′)

∣∣ L̂(−)(a) ·
〈
n(t′)

∣∣Ψg
〉
, (2.26)

where we include normalization factors of 1√
N
, due to the normalization of A, and N , due

to the different electrons the Bloch operator can act on. From here on we revert the Bloch
symbol L̂(−)(a) to a single-electron operator as originally introduced.
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The remaining single-electron wavefunction on the right of the Bloch operator can now
be recognised to be the Dyson orbital corresponding to channel n, which we denote by

|nD(t)〉 =
√
N 〈n(t)|Ψg〉 . (2.27)

The matrix element in question is then left as

〈
kn(t′)

∣∣⊗ 〈n(t′)
∣∣AL̂(−)(a) |Ψg〉 =

〈
kn(t′)

∣∣ L̂(−)(a)
∣∣nD(t′)

〉
. (2.28)

Finally, we note that the above is also valid in the single-electron case, provided that one
drops the ion states and simply takes the Dyson orbital to be the ground state.

2.1.6 Separating the single- and cross-channel amplitudes

We now turn to the propagator part of (2.24) – the terms in UN (t, t′)A |n(t′)〉 ⊗ |kn(t′)〉
that take the electron, ionized at t′ with amplitude 〈kn(t′)| L̂(−)(a) |nD(t′)〉 as above, to
its state at time t. Our chosen basis enables us to propagate the ionic state |n(t)〉 and its
corresponding eikonal-Volkov continuum state |kn(t)〉, on the level of the self-consistent
field Un(r) of the ion, but we have yet to account for the entangling part of the interaction,

V n
ee(t) := Vee − 〈n(t)|Vee |n(t)〉 , (2.29)

in terms of which the total hamiltonian can be written as

H(−) = HN−1 +Hn
e (t) + V n

ee(t). (2.30)

We deal with this combination in a perturbative fashion with respect to the entangling
interaction, treating the correlation operator V n

ee as a small effect on top of the single-
active electron dynamics of tunnel ionization. We use, specifically, the main tool of time-
dependent perturbation theory, the Dyson expansion.

Mathematical Aside 2.1. The Dyson expansion

Suppose that the total hamiltonian of the system is split asH = H0+∆H between
a basic hamiltonian H0 whose propagator U0(t, t′) is known, solving

i
∂

∂t
U0(t, t′) = H0U0(t, t′) under U0(t, t) = 1, (2.31)

and an additional interaction ∆H. Then the full propagator U(t, t′) for H, satis-
fying

i
∂

∂t
U(t, t′) = HU(t, t′) under U(t, t) = 1, (2.32)

can be written recursively in the form

U(t, t′) = −i
∫ t

t′
dt′′ U(t, t′′)∆H(t′′)U0(t′′, t′) + U0(t, t′). (2.33)
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Repeated application of this expansion gives a series solution for U(t, t′) in powers
of ∆H, though this series need not converge and may require renormalization
procedures to work well [104]. A proof of this identity, via direct calculation, is
available in Ref. 7.

Applying this expansion to our split of the hamiltonian on each of the channels, and
treating the channel-specific correlation operator V n

ee as the perturbation, enables us to
write our wavefunction as a direct contribution and a cross-channel one,

|Ψ(t)〉 = |Ψ(0)(t)〉+ |Ψ(1)(t)〉 (2.34a)

where in the direct channel the ionized electron is distinguishable, so the antisymmetrizer
drops out and the propagator separates into the ionic propagator UN−1(t, t′) and the
channel-specific continuum propagator Une (t, t′),

∣∣∣Ψ(0)(t)
〉

= −i
∑
n

∫
dk
∫ t

dt′UN−1(t, t′)
∣∣n(t′)

〉
⊗ Une (t, t′)

∣∣kn(t′)
〉

×
〈
kn(t′)

∣∣L̂(−)(a)
∣∣nD(t′)

〉
eiIpt

′ (2.34b)

and the cross-channel contribution is given by

∣∣∣Ψ(1)(t)
〉

= (−i)2∑
n

∫
dk
∫ t

dt′′
∫ t′′

dt′UN (t, t′′)V n
ee(t′′)UN−1(t′′, t′)

∣∣n(t′)
〉

⊗ Une (t′′, t′)
∣∣kn(t′)

〉
×
〈
kn(t′)

∣∣L̂(−)(a)
∣∣nD(t′)

〉
eiIpt

′
. (2.34c)

2.2 The direct ionization amplitude

In this section we will focus on the direct tunnelling term, |Ψ(0)(t)〉, which accounts for
the single-active electron dynamics that are of interest in chapters 5 and 6 of this thesis,
and which form the baseline for the correlation-driven dynamics studied in chapter 3.

To bring the calculation down to more concrete quantities, we consider the ionization
yield with final momentum p in channel n: that is, we want the probability amplitude for
the ion to be left in the free state |n〉 with the ionized electron at canonical and mechanical
momentum p at some time T after the laser pulse has finished.

In the cases where we’re interested in the final state of the ion after the pulse is over,
there is an additional complication in that the laser pulse may cause transitions among
different quasi-static eigenstates of the ion between the ionization event and the end of
the pulse, and to evaluate this we would require a prohibitively complex (N − 1)-electron
back-propagation of the Schrödinger equation.

To reach a compromise, we project on the basis of quasi-static eigenstates at a time
t0 shortly after the ionization step is completed. This is equivalent to projecting on the
basis UN−1(T, t0) |n(t0)〉 at time T and represents a definite loss of contrast to projecting
on the free states |n〉, but since the transitions caused by the laser are indistinguishable
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from those caused by the electron this loss of contrast is inevitable.
We therefore define the ionization yield, our main handle on the system’s state, as

an(p, t0) := 〈p| ⊗ 〈n(t0)|UN−1(t0, T ) |Ψ(T )〉. (2.35)

In these terms, the direct ionization yield corresponding to the first-order term of (2.34b)
is naturally given by

a(0)
m (p, t0) = −i

∑
n

∫ t0

−∞
dt′
〈
m(t0)

∣∣UN−1(t0, t′)
∣∣n(t′)

〉 〈
pn(t′)

∣∣L̂(−)(a)
∣∣nD(t′)

〉
eiIpt

′
,

(2.36)

and it describes a single ionization burst centred at a time t0.
Moreover, we now neglect the effects of polarization of the core, so the ionic eigenstates

reduce to their free propagation,

〈
m(t0)

∣∣UN−1(t0, t′)
∣∣n(t′)

〉
= δmne

−iEm(t0−t′), (2.37)

so the ionization yield reduces to

a(0)
n (p, t0) = −ie−iEnt0

∫ t0

−∞
dt′
〈
pn(t′)

∣∣L̂(−)(a)
∣∣nD(t′)

〉
eiIp,nt

′
, (2.38)

where
Ip,n = En − Eg = Ip + En (2.39)

is the ionization potential into channel n.

2.2.1 The Volkov action and its saddle-point approximation

We now tackle the continuum state matrix element in the ionization yield of (2.38). This
state, given in the position representation by (2.18), has two main ingredients, which play
two distinct roles: the spatial plane-wave dependence ei(k+A(t))·r, which in the matrix
element 〈pn(t′)|L̂(−)(a)|nD(t′)〉 extracts the relevant spatial information from the Dyson
orbital and the ionizing Bloch operator, and the phase e−

i
2

∫ t
T

(p+A(τ))2dτ , which carries
most of the strong time dependence in the integral in (2.38).

We will now disentangle these two roles: we will encapsulate the spatial dependence
into a single shape factor, and we will perform a saddle-point approximation to resolve the
temporal integral into specific trajectory-based components. However, because the factor
of eiA(t)·r weaves both the spatial and temporal integrals together, disentangling the two
roles will require a certain amount of approximation.

To begin with, putting in the explicit eikonal-Volkov state into (2.38), via a decompo-
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sition of unity in the position representation, transforms it into

a(0)
n (p, t0) = −ie−iEnt0

∫ t0

−∞
dt′e

i
2

∫ t′
T

(p+A(τ))2dτeiIp,nt
′
∫ dr

(2π)3/2 e
−i(p+A(t′))·r

× ei
∫ t′
T
Un(rL(τ ;r,p,t′),τ)dτ 〈r∣∣L̂(−)(a)

∣∣nD(t′)
〉
. (2.40)

For simplicity, the arguments of Un will hereafter be dropped unless they play an active
role. Moreover, as before, we will neglect the contributions of polarization of the core,
and ignore the time dependence of the Dyson orbital (and, similarly, in the mean-field
electrostatic interaction Un). This then lets us reorganize the integrals in the form

a(0)
n (p, t0) =− ie−iEnt0

∫ dr
(2π)3/2 〈r|L̂

(−)(a)|nD〉

×
∫ t0

−∞
dt′e−i(p+A(t′))·reiIp,nt

′
e
i
2

∫ t′
T

(p+A(τ))2dτei
∫ t′
T
Un(rL(τ ;r,p,t′))dτ . (2.41)

The problem with this integral is that it is highly oscillatory, essentially through the
influence of the terms eiIp,nt′e

i
2

∫ t′
T

(p+A(τ))2dτ : the integrand changes sign with a frequency
dictated by the ionization potential, via eiIp,nt′ , but it is integrated over timescales of at
least several laser cycles, with a laser frequency ω much smaller than Ip. The result is
shown in Fig. 2.2: a function which oscillates rapidly, with varying frequency. In general,
the integral of such a function can indeed be calculated numerically – most easily when an
explicit oscillatory factor like eiIp,nt′ is present – but calculating it accurately is challenging,
because of the numerous cancellations: if a and b are very close to each other, one needs
very high accuracy in both a and b to get even mediocre accuracy in a− b.

Re
[
eiIp,nte

i
2

∫ t
T

(p+A(τ))2dτ
]

Figure 2.2: Real part of the oscillatory factors of Eq. (2.41), for a sinusoidal field of the
form A(t) = −Fω sin(ωt). Here the field strength is F = 0.053 a.u., for a λ = 800 nm field
ionizing hydrogen into a final momentum of p = 0.5 a.u.

The solution is to use what is known as the saddle-point approximation. If the integrand
is an analytic function of t′, we can deform the path of integration to any path that
connects the two endpoints and obtain the same integral, so we can look for better choices
of integration contour. The basic features of the integrand are captured mainly by the
oscillatory factors, eiIp,nt′e

i
2

∫ t′
T

(p+A(τ))2dτ = e−iS(t′), whose structure is shown in Fig. 2.3.
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Figure 2.3: Landscape for the amplitude of the exponent in the oscillatory factors,

e−iS(t′) = eiIpt
′
e

i
2

∫ t′

T
(p+A(τ))2dτ , for the same field as Fig. 2.2. The height and colour

of the landscape indicate Im(S(t′)), which governs the amplitude of the integrand through
|e−iS(t′)| = eIm{S(t′)}. The lines of constant Re(S(t′)) are orthogonal to the Im(S(t′))
contour lines, and they form the paths of steepest ascent and descent on the landscape,
along which e−iS(t′) ceases to oscillate, changing only in amplitude.

In particular, if we shift the contour towards positive imaginary times, the amplitude
of the oscillations, given by |e−iS(t′)| = eIm(S(t′)) decreases sharply except for a few points
of maximal contribution, and if we make the contour pass through the saddle points of the
landscape (the solutions of the complex equation dS(t′)

dt′ = 0), we minimize the maximal
amplitude of the integrals. In addition to this, we can also choose an integration contour
along the lines where the Re(S(t′)) is constant, which guarantees that the amplitude drop
is as fast as possible and that the oscillations stop; the integrand e−iS(t′) then becomes a
series of sharp, flat, gaussian-like humps centred on each of the saddles.

So far, this procedure can be done exactly, and it provides a way to neutralize the effect
of the integrand’s oscillations at the cost of finding a complicated contour and integrating
over it. The saddle-point approximation itself consists of forgetting about the long tails
of the contour in the valleys of the integrand, and seeing the transformed integrand for
what it is: a series of humps which are very well approximated by gaussians that can be
integrated exactly, leaving a single contribution from each hump.
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Mathematical Aside 2.2. The saddle-point approximation

More precisely, if F is an analytic function which varies slowly with respect to
the analytic exponent ϕ, then the integral of the combination eρϕ(ζ) can be ap-
proximated by a sum of the form

∫ B

A
F (ζ)eρϕ(ζ)dζ =

∑
s

√
2π
ρ

F (ζs)eρϕ(ζs)

[−ϕ′′(ζs)]1/2
(2.42)

over all the relevant saddle points ζs, which satisfy ϕ′(ζs) = 0 and are accessible to
a deformed contour that joins A and B [105–107]. In general this approximation
holds in an asymptotic sense as the multiplier increases to ρ → ∞, which is
missing from our exponent, but in practice the exponent is large enough that the
saddle-point approximation is excellent.

Turning back to our integral, we see that the temporal integral
∫ t0

−∞
dt′e−i(p+A(t′))·r+iIp,nt′+ i

2

∫ t′
T

(p+A(τ))2dτei
∫ t′
T
Un(rL(τ ;r,p,t′))dτ (2.43)

naturally splits into two components: a slow-acting Coulomb phase ei
∫ t′
T
Un(rL(τ ;r,p,t′))dτ

and a fast oscillatory factor e−iSV (t′) where the phase is given by the classical action of an
electron in the field,

SV (t′) =
(
p + A(t′)

)
· r− Ip,nt′ −

1
2

∫ t′

T
(p + A(τ))2 dτ, (2.44)

which we will generally call the Volkov action.
The saddle-point approximation then asks us to look for the points at which this phase

is stationary, which happens when

0 = dSV
dt′ (tr) = d

dt′

[
−1

2

∫ t′

T
(p + A(τ))2 dτ − Ip,nt′ +

(
p + A(t′)

)
· r
]
tr

= −
(1

2 (p + A(tr))2 + Ip,n + F(tr) · r
)
. (2.45)

This condition is relatively complicated, because the equation, and therefore also the
solution, tr, depends on the position r, which will later be integrated over. To tackle this,
we will concentrate on a ‘central’ saddle point, which satisfies the equation

1
2 (p + A(ts))2 + Ip,n = 0, (2.46)

and then we will estimate the effect of the additional terms F(tr) · r on tr. In general, if
the boundary radius is chosen well inside the tunnelling region, which occurs when

|Fa| � Ip,n, (2.47)
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then tr will be close to ts and we will be able to estimate the effect of the term F(tr) · r
in a linearized regime.

For the monochromatic, linearly polarized fields we consider, the saddle-point equa-
tion (2.46) is easy to solve. Separating the momentum into its parallel and orthogonal
components with respect to the laser polarization, and taking

A(t) = −F
ω

n̂ sin(ωt), (2.48)

the saddle-point equation reads

1
2

(
p‖ −

F

ω
sin(ωts)

)2
+ 1

2p⊥
2 + 1

2κ
2
n = 0, (2.49)

for κn =
√

2Ip,n, or, alternatively,

p‖ −
F

ω
sin(ωts) = ±

√
−(κ2

n + p⊥2), (2.50)

which is easily resolved to

ωts = arcsin
(
ω

F

(
p‖ ± i

√
κ2
n + p⊥2

))
. (2.51)

Here the arcsine function is a standard holomorphic function [63, §4.23], whose principal
branch has branch cuts on (−∞,−1] and [1,∞), and takes values in the complex strip
−π

2 < Re(arcsin(ζ)) < π
2 . In particular, the arcsine function takes the upper half-plane

Im(ζ) > 0 into the upper half-strip Im(arcsin(ζ)) > 0, and since we’re only interested
in saddle-point times ts with positive imaginary parts – as those are the ones that give
acceptable contours, as shown in Fig. 2.2 – we can finally take only the positive sign to get

ωts = arcsin
(
ω

F

(
p‖ + i

√
κ2
n + p⊥2

))
. (2.52)

To solve the full equation for tr = ts+∆tr, we linearize the equation at ts, which reads

A(tr) = A(ts + ∆tr) ≈ A(ts) + ∆tr
dA
dt (ts) = A(ts)−∆trF(ts) (2.53)

and a similar expansion for F(tr), to get

0 = 1
2 (p + A(ts)−∆taF(ts))2 + Ip,n + F(ts) · r + ∆ta

dF
dt (ts) · r

= 1
2 (p + A(ts))2 + Ip,n −∆ta (p + A(ts)) · F(ts) + F(ts) · r

+ 1
2 (∆taF(ts))2 + ∆ta

dF
dt (ts) · r

= ∆ta
(dF

dt (ts) · r− (p + A(ts)) · F(ts)
)

+ F(ts) · r + 1
2 (∆taF(ts))2 . (2.54)

http://dlmf.nist.gov/4.23
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Dropping the quadratic term for consistency, we get ∆tr in the form

∆tr = r · F(ts)
(p + A(ts)) · F(ts)

= z

p‖ +A(ts)
, (2.55)

where z = r·n̂ is the position coordinate along the laser polarization. Here, we should note
that the denominator in this expression, p‖+A(ts), gives the kinematic momentum – equal
to the velocity v‖(ts), since the mass is unity – at the time of ionization ts. Moreover, this
kinematic momentum is completely determined by the saddle-point equation (2.52), as

v‖(ts) = p‖ +A(ts) = −i
√
κ2
n + p⊥2 ≈ −iκn. (2.56)

Finally, the position z = r · n̂ in the numerator is bounded, since the r integral is to be
taken only over the ARM boundary of radius a.

We can now begin using these tools to simplify our integral, which with the application
of the saddle-point approximation reads

a(0)
n (p, t0) = −ie−iEnt0

∫ dr
(2π)3/2 〈r|L̂

(−)(a)|nD〉
∫ t0

−∞
dt′e−iSV (t′)ei

∫ t′
T
Un(rL(τ ;r,p,t′))dτ

≈ −ie−iEnt0
∫ dr

(2π)3/2 〈r|L̂
(−)(a)|nD〉

√
2π

iS′′V (tr)e
−iSV (tr)ei

∫ tr
T
Un(rL(τ ;r,p,tr))dτ .

(2.57)

Here it is important to note that we are focusing on the contribution from a single burst
of ionization, represented by the selection of the contribution of a single saddle point.
To get the full contribution, one must select all relevant saddle points and add their
contributions coherently, which then gives rise to both inter-cycle interference – otherwise
known as ATI rings – and intra-cycle interferences which provide additional structure to
the photoelectron spectrum. In this thesis, however, we will focus on the details of the
contribution of each specific ionization burst.

For now, we focus on analysing the contribution of the phase e−iSV (tr), which we can
again linearize with respect to the saddle point displacement ∆tr to get

SV (tr) = SV (ts) + ∆trS′V (ts) (2.58)

with S′V (ts) = dA
dt (ts) · r− Ip,n −

1
2 (p + A(ts))2 = −F(ts) · r, (2.59)

and with
SV (ts) = (p + A(ts)) · r− Ip,nts −

1
2

∫ ts

T
(p + A(τ))2 dτ (2.60)

separating into an r-dependent component, (p + A(ts)) · r, and an r-independent one,
Ip,nts + 1

2
∫ ts
T (p + A(τ))2 dτ . On the other hand, since it appears in a pre-exponential

factor, we neglect the appearance of tr in the square root and take S′′V (tr) ≈ S′′V (ts).
Putting these in place, then, we can now separate the main position-independent parts
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from the position integral, which reads

a(0)
n (p, t0) = −ie

−iEnt0√
iS′′V (ts)

eiIp,nts+
i
2

∫ ts
T

(p+A(τ))2dτ

×
∫ dr

2πe
−i∆trS′V (ts)ei

∫ tr
T
Un(rL(τ ;r,p,tr))dτe−i(p+A(ts))·r 〈r|L̂(−)(a)|nD〉 . (2.61)

Here, moreover, we neglect the term in ∆trS′V (ts), which is of order Fa2/κn, as it is
second-order in a. This represents the strongest upper bound on our boundary radius,
which is then restricted by

κna� 1 and Fa2 � κn. (2.62)

The two together then imply that Fa � κn/a ∼ Ip,n/κa � Ip,n. They also imply a
restriction on the strength of the field the theory is able to handle, as F � κn/a

2 � κ3
n,

which is the characteristic electric field strength for the state |n〉.
To go further, we now need to look directly at the Bloch matrix element with the

Dyson orbital, 〈r|L̂(−)(a)|nD〉. Substituting in the definition (2.10) gives us

〈r|L̂(−)(a)|nD〉 = δ(r − a)
(
∂

∂r
+ b(r)

)
〈r|nD〉 , (2.63)

but to go beyond that we need some kind of additional handle on the Dyson orbital and
its radial dependence. To get such a handle, we use the fact that we are taking the ARM
artificial boundary to be far from the core, so κna� 1, and in this regime the wavefunction
is in its asymptotic regime, where only a single electron is likely to be present at any given
time, and its wavefunction is in the semiclassical WKB regime, of the form

ψg(r = a) ∝ e−i
∫ tκ
tr

Udτ
. (2.64)

General results regarding this connection are hard to establish analytically, although
numerical methods based on ensembles of wavepackets propagated classically are quite
successful [108]. This is due partly to the difficulty of constructing WKB methods∗ on
more than one spatial dimension, and also to the fact that the Dyson orbital |nD(t)〉 =√
N 〈n(t)|Ψg〉 depends on far more detail on the neutral and ionic hamiltonians than

through the mean value Un = 〈n(t)|Vee|n(t)〉.
The general plan is to match this WKB expression to the tr-dependent Coulomb phase

ei
∫ tr
T
Un(rL(τ ;r,p,tr))dτ in the ionization yield integral, in the hope that the (unphysical)

dependence on the boundary radius a will vanish. In general this will be possible, but
only approximately so, and it will be achieved by transforming both expressions to a
common reference point.

Thus, we begin with the laser-driven trajectory from the argument of the electrostatic

∗Wentzel–Kramers–Brillouin methods; see e.g. Ref. 76.
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interaction Un, which reads (using v(t) = p + A(t) for simplicity)

rL(τ ; r,p, tr) = r +
∫ τ

tr
v(τ ′)dτ ′ = r−

∫ tr

ts
v(τ ′)dτ ′ +

∫ τ

ts
v(τ ′)dτ ′

≈
(
r−∆trv(ts)

)
+
∫ τ

ts
v(τ ′)dτ ′. (2.65)

In this form, it is easier to see that most of the directional contribution in the first two
terms vanishes, because ∆tr = z/v‖(ts) is essentially the time it takes for the electron to
advance along the z axis to the specified starting position at the birth velocity v‖(ts), even
though both the time and the velocity are complex quantities. To make this argument
more precise, we simply calculate the terms in brackets to get

r−∆trv(ts) = r− F(ts) · r
F(ts) · v(ts)

v(ts) =


x

y

z

− z

vz


vx

vy

vz

 = 1
vz


vzx− vxz
vzy − vyz

0

 , (2.66)

where the first two components are strongly reminiscent of a vector cross product. Thus,
as long as the main contributions to the spherical integral come from points that satisfy

x

z
≈ vx
vz

and y

z
≈ vy
vz
, (2.67)

we can ignore the remnant r−∆trv(ts), which makes the inner integral r-independent. It
is important to note here, though, that v‖(ts) = p‖+A(ts) is a complex quantity, whereas
the transverse components are simply the transverse momentum and are therefore real, as
are in this setting all three position coordinates. Nevertheless, this approximation is good
enough that we will ignore the remnant. With this, then, we can approximate the inner
integral in Un(rL(τ ; r,p, tr)) as

ei
∫ tr
T
Un(rL(τ ;r,p,tr))dτ ≈ exp

[
−i
∫ T

tr
Un

(∫ τ

ts
v(τ ′)dτ ′

)
dτ
]
. (2.68)

Finally, we split the outer integral up into two contributions, one from the r-dependent
tr to some reference time tκ that depends only on the initial state (which encapsulates
the r dependence), and one from tκ to the final time T (which catches the bulk of the
tunnelling dynamics), so

ei
∫ tr
T
Un(rL(τ ;r,p,tr))dτ ≈ e

−i
∫ tκ
tr

Un

(∫ τ
ts

v(τ ′)dτ ′
)

dτ
e
−i
∫ T
tκ
Un

(∫ τ
ts

v(τ ′)dτ ′
)

dτ
. (2.69)

This concludes the transformations of this factor, which when put back into our ionization
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yield (2.61) gives

a(0)
n (p, t0) = −ie

−iEnt0√
iS′′V (ts)

eiIp,nts+
i
2

∫ ts
T

(p+A(τ))2dτe
−i
∫ T
tκ
Un

(∫ τ
ts

v(τ ′)dτ ′
)

dτ

×
∫ dr

2πe
−i
∫ tκ
tr

Un

(∫ τ
ts

v(τ ′)dτ ′
)

dτ
e−i(p+A(ts))·r 〈r|L̂(−)(a)|nD〉 . (2.70)

In one sense, we’re done: this expression completes the separation of the temporal
integral and the encapsulation of the shape-dependent factors. Indeed, we can now define

Rn(p) = −i√
iS′′V (ts)

∫ dr
2πe

−i
∫ tκ
tr

Un

(∫ τ
ts

v(τ ′)dτ ′
)

dτ
e−i(p+A(ts))·r 〈r|L̂(−)(a)|nD〉 , (2.71)

and this represents a shape factor that carries all the information about the shape of the
molecular wavefunction, with only a relatively weak dependence on the tunnelling time ts,
giving an ionization yield of the form

a(0)
n (p, t0) = e−iEnt0eiIp,nts+

i
2

∫ ts
T

(p+A(τ))2dτe
−i
∫ T
tκ
Un

(∫ τ
ts

v(τ ′)dτ ′
)

dτ
Rn(p). (2.72)

This contains the essential results of the Analytical R-Matrix theory of tunnelling in
an explicit and simple fashion. Of course, more work is required on the shape factor –
essentially a Fourier transform of the Dyson orbital over the spherical boundary –, in
terms of showing its independence with respect to the choice of the boundary radius a,
but in practice this requires a more concrete Dyson orbital to really work. Nevertheless,

in general, the Coulomb phase e
−i
∫ tκ
tr

Un

(∫ τ
ts

v(τ ′)dτ ′
)

dτ
in Rn(p) will typically cancel out

the radial a dependence of the amplitude in 〈r|L̂(−)(a)|nD〉.
For completeness, we include here a brief analysis of the Volkov action’s second deriva-

tive, S′′V . We know already the first derivative,

−idSVdt′ = i

(1
2
(
p + A(t′)

)2 + Ip,n + F(t′) · r
)
, (2.73)

from which we can calculate

d2SV
dt′2 = −

((
p + A(t′)

)
· dA

dt′ + dF(t′)
dt′ · r

)
=
(

v(t′) · F(t′)− dF(t′)
dt′ · r

)
. (2.74)

The second term does depend on r but it is precisely this dependence that makes it
negligible with respect to the first, as long as the product a2ω is of order unity, for ω
the pulse’s carrier frequency. Under this approximation, then, S′′V (ts) depends only on the
parallel momentum p‖, and is equal in a semiclassical interpretation to the power delivered
by the laser pulse to the ionized electron.
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2.2.2 The shape factor and boundary independence

We now turn to examine the shape factor Rn(p) in more detail. As mentioned above,
the definition (2.71) does a good job of boxing up the dependence on the shape of the
ionized Dyson orbital, but it is a complicated quantity and, more specifically, it has an
explicit dependence on the choice of boundary radius a, which is arbitrary and should not
affect any physical results. In general, the dependence from the wavefunction will cancel

out with that from the eikonal Coulomb phase e
−i
∫ tκ
tr

Un

(∫ τ
ts

v(τ ′)dτ ′
)

dτ
, and in this section

we will examine this claim for the specific example of an orbital for which the radial and
angular dependence factor out.

More specifically, we consider the separable orbital

〈r|nD〉 = ϕ(r)f(θ, φ) (2.75)

where f is arbitrary for now, and where the radial wavefunction ϕ is in the asymptotic
WKB regime for a state of ionization potential Ip = 1

2κ
2 (dropping, for now, the subscript

n) and charge Q,

ϕ(r) = Cκlκ
3/2 e

−κr

κr
(κr)Q/κ. (2.76)

The first step is to deal with the action of the Bloch operator, where we can ignore
the angular part of the wavefunction. Taking the definition (2.10), we get the relatively
simple expression

(
∂

∂r
+ b(r)

)∣∣∣∣
a
ϕ(r) = Cκlκ

3/2
(
∂

∂r
+ b(r)

)∣∣∣∣
a

[
e−κr

κr
(κr)Q/κ

]

= Cκlκ
3/2

(
−κ− 1

a
+ Q/κ

a
+ b(a)

) [
e−κa

κa
(κa)Q/κ

]

=
(
−κ+ Q/κ− 1

a
+ b(a)

)
ϕ(a). (2.77)

Note that here we use the freedom in the choice of b(r) to set it to

b(r) = 1−Q/κ
r

, (2.78)

using κ =
√

2Ip for the ionization potential to the ionic ground state, which guarantees
that

〈r|L̂(−)(a)|nD〉 = −κ 〈r|nD〉 , (2.79)

for the ground state, with small corrections on that for higher-lying ionic states. The action
of the Bloch operator then reduces to a constant, and we can focus on the wavefunction
as per (2.76).

This WKB expression is to be matched by the eikonal Coulomb phase, which corre-
sponds in this case to a bare Coulomb interaction with a charge Q,

Un(r) ≈ −Q
r
. (2.80)
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As such, its integral is given by

−i
∫ tκ

tr
Un

(∫ τ

ts
v(τ ′)dτ ′, τ

)
dτ =

∫ tκ

ta

−iQdτ√
r(τ)2 (2.81)

where we have defined r(τ) :=
∫ τ
ts

r̂ ·v(τ ′)dτ ′, for which dr
dτ = r̂ ·v(τ). To proceed, we now

perform two approximations: we first assume that the velocity will not change significantly
during the time interval being integrated, so we can replace v(τ) by v(ts), and we further
suppose that the tunnelling velocity will be primarily directed towards negative z (since
the field points towards positive z and the charge is negative). These two together imply
that dr

dτ ≈ −v‖(ts) ≈ +iκ and therefore that

∫ tκ

tr

−iQdτ√
r(τ)2 = −Q

κ

∫ rκ

a

dr√
r2

= +Q

κ

∫ rκ

a

dr
r

= Q

κ
ln
(
rκ
a

)
= −Q

κ
ln (κa) , (2.82)

where the radial constant rκ, equal to the radius at the originally arbitrary integration
limit tκ, has been chosen as rκ = 1/κ. The exponential of this integral,

e
−i
∫ tκ
tr

Un

(∫ τ
ts

v(τ ′)dτ ′
)

dτ
= e−

Q
κ

ln(κa) = (κa)−Q/κ, (2.83)

is then a direct counterpart to the equivalent factor in (2.76).
We can thus incorporate all of this into the shape factor (2.71), to get

Rn(p) = iCκlκ
5/2√

iS′′V (ts)
e−κa

κa

∫
a2dΩ

2π f(θ, φ) e−i(p+A(ts))·r
∣∣∣
r=a

. (2.84)

This is a Fourier transform of the angular dependence taken over the spherical boundary,
but it is important to note that the momentum of the Fourier transform, p + A(ts), is in
general a complex vector since the ionization time ts is also complex; this will change the
phase to an exponential which will counter the existing e−κa from the wavefunction.

In fact, because the complex ionization time ts is a tightly-controlled function of the
momentum, via the saddle-point equation (2.46), the exponential factor p+A(ts) has very
little freedom, and it does not actually depend on the longitudinal momentum p‖ along
the laser polarization. Splitting that vector in its components along and across the laser
polarization,

p + A(ts) = p⊥ + (p‖ +A(ts))n̂, (2.85)

with p⊥ · n̂ = 0, the saddle-point equation (2.46) reads

1
2p⊥

2 + 1
2(p‖ +A(ts))2 = −1

2κ
2. (2.86)

Here we must choose the imaginary sign for the square root, because those are the roots
that can be reached with the appropriate contours shown in Fig. 2.3 with the negative
imaginary sign chosen for the square root, so that

p‖ +A(ts) = −i
√
κ2 + p⊥2, (2.87)
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and therefore
p + A(ts) = p⊥ − i

√
κ2 + p⊥2n̂. (2.88)

With this, then, the shape factor simplifies to

Rn(p) = iCκlκ
1/2√

iS′′V (ts)
κa e−κa

∫ dΩ
2π f(θ, φ)e−iap⊥·r̂e−κa

√
1+p⊥2/κ2n̂·r̂, (2.89)

for r̂ = r/r the unit vector along r. Here the last factor e−κa
√

1+p⊥2/κ2n̂·r̂ ≈ e−κan̂·r̂

concentrates the integral along positions opposite to the laser polarization direction n̂,
that is, positions where n̂ · r̂ ≈ −1, and where therefore that factor is of the order of eκa.
This will then cancel out with the e−κa factor from the wavefunction.

Finally, there is an additional factor of a that comes from the geometrical factors of
the wavefunction and the volume element, and this too will in general cancel out. Here,
though, the internal dependence is via the scale embedded in the Fourier kernel e−iap⊥·r̂,
so the effect must be seen on a case-by-case basis. Nevertheless, we expect from the
a independence of Rn(p) that the integral will have a leading dependence on a of the
form eκa/κa.

To wrap up this section, we encapsulate this inner integral in its own notation, as

Rn(p) = iCκlκ
3/2√

iS′′V (ts)
ae−κaSFT(q), (2.90a)

where SFT(q) =
∫ dΩ

2π f(θ, φ)e−iq·r̂, (2.90b)

for q = a(p + A(ts)) = ap⊥ − iκa
√

1 + p⊥2/κ2 n̂. To be able to say more about this
spherical Fourier transform, though, we require a better handle on the ingredients – we
need an explicit angular wavefunction.

2.3 Molecular shape factors

One useful test case for this Fourier transform is the case of hydrogenic orbitals, which
are easy to treat analytically and which afford fairly clean (but still approximate) results
that can be matched against the existing PPT theory [33], which is the approach taken
in Refs. 7 and 67. As an alternative to that, here we will treat a more complex molecular
shape, and we will focus on an angular dependence of the form

f(θ, φ) = F (cos(θ), sin(θ) cos(φ)), for (2.91a)

F (cos(θ), sin(θ) cos(φ)) = cosh(b cos(θ))(1 + c cos2(θ))

× sinnx+ny(θ) cosnx(φ) sinny(φ) cosnz(θ). (2.91b)

This is a good model for the asymptotic angular dependence of molecular orbitals in
small linear molecules [109, 110], such as carbon dioxide or molecular nitrogen, and it
describes an elongated orbital with one or no nodes in the molecular-frame x, y and z
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planes (according to whether nx, ny and nz are 0 or 1, respectively), with the molecular
axis along the z direction. Here θ and φ are the azimuthal and longitudinal spherical
coordinates in this molecular frame. In this section we will calculate the spherical Fourier
transform of this orbital shape, obtaining simple analytical formulas for the shape factor
of molecular orbitals.

Thus, we consider the integral

SFT(q) =
∫ dΩ

2π cosh(b cos(θ))(1 + c cos2(θ)) sinnx+ny(θ) cosnx(φ) sinny(φ) cosnz(θ)

× e−i(qx sin(θ) cos(φ)+qy sin(θ) sin(φ)+qz cos(θ)), (2.92)

which splits naturally into azimuthal and longitudinal integrals as

SFT(q) =
∫ π

0
dθ cosh(b cos(θ))(1 + c cos2(θ)) sinnx+ny(θ) cosnz(θ)e−iqz cos(θ)

× 1
2π

∫ 2π

0
dφ cosnx(φ) sinny(φ)e−i(qx sin(θ) cos(φ)+qy sin(θ) sin(φ)). (2.93)

Here the longitudinal integral is essentially a standard Bessel integral, but in practice
this gets complicated by the mixed cos(φ)-sin(φ) character of the exponent. To resolve
this, we rewrite the momentum q in cylindrical coordinates, as

{
qx = qt cos(φq),

qy = qt sin(φq).

(2.94a)

(2.94b)

It is important to note, however, that in general q will be a complex vector, and the
characterization in (2.94) is only unambiguous for a real vector. The way to resolve this
(which will be much-used tool throughout this section) is to assume that all quantities are
real whenever they need to be, and then use analytic continuation to lift that restriction.
This works because the integrand in (2.93) is a continuous and entire function of the com-
ponents of q, integrated over a compact domain, so it has a unique analytical continuation
to the whole of C3. If we can manipulate the integral, even if only for real parameters,
into an explicitly analytical function of qx, qy and qz, the two forms must match over the
extended complex domain.

The cylindrical decomposition in (2.94) helps us rephrase the exponential kernel of the
longitudinal integral as e−i(qx sin(θ) cos(φ)+qy sin(θ) sin(φ)) = e−iqt sin(θ) cos(φ−φq), but we still
have to include the nodal factors in a standard way; this can be done via the identity

cosnx(φ) sinny(φ) =
(
eiφ + e−iφ

2

)nx (
eiφ − e−iφ

2i

)ny
= ei(nx+ny)φ + (−1)nx+nye−i(nx+ny)φ

2nx+ny iny + δnx0δny0
,

(2.95)

which is valid case-by-case for 0 ≤ nx, ny ≤ 1. Then, using Bessel’s first integral [63,
Eq. (10.9.2)], we have

1
2π

∫ 2π

0
dφ cosnx(φ) sinny(φ)e−i(qx sin(θ) cos(φ)+qy sin(θ) sin(φ))

http://dlmf.nist.gov/10.9.2
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= 1
2π

∫ 2π

0

ei(nx+ny)φ + (−1)nx+nye−i(nx+ny)φ

2nx+ny iny + δnx0δny0
e−iqt sin(θ) cos(φ−φq)dφ

= (−i)nx+ny e
i(nx+ny)φq + (−1)nx+nye−i(nx+ny)φq

2nx+ny iny + δnx0δny0
Jnx+ny(qt sin(θ))

= (−i)nx+ny cosnx(φq) sinny(φq)Jnx+ny(qt sin(θ))

= (−i)nx+ny qnxx qnyy

(q2
x + q2

y)
nx+ny

2
Jnx+ny

(√
q2
x + q2

y sin(θ)
)
. (2.96)

As noted above, the equality holds for all real qx and qy, with entire functions on both
sides, so the two must match for all complex qx and qy.

Using this expression, we can now phrase SFT(q) in the form

SFT(q) =
∫ π

0
dθ cosh(b cos(θ))(1 + c cos2(θ)) sinnx+ny(θ) cosnz(θ)e−iqz cos(θ)

× (−i)nx+ny qnxx qnyy

(q2
x + q2

y)
nx+ny

2
Jnx+ny

(√
q2
x + q2

y sin(θ)
)
, (2.97)

and begin the azimuthal integral. This integral is relatively complicated, but to make it
somewhat simpler we can expand the hyperbolic cosine, cosh(b cos(θ)), and include it into
the Fourier kernel:

SFT(q) =
∑
±

∫ π

0
dθ(1 + c cos2(θ)) sinnx+ny(θ) cosnz(θ)e−i(qz±ib) cos(θ)

× (−i)nx+ny

2
qnxx qnyy

(q2
x + q2

y)
nx+ny

2
Jnx+ny

(√
q2
x + q2

y sin(θ)
)
. (2.98)

In this form, the integral is not that complicated, and it consists of the Fourier kernel
e−i(qz±ib) cos(θ), a Bessel function of the form Jnx+ny (qt sin(θ)), and a trigonometric poly-
nomial in θ. As such, the form is well covered by Gegenbauer’s finite integral [111, p. 379;
112, §7.333], which reads∫ π

0
eiz cos(ψ) cos(θ)Jν− 1

2
(z sin(ψ) sin(θ))C(ν)

r (cos(θ)) sinν+ 1
2 (θ) dθ

=
(2π
z

)1/2
ir sinν−

1
2 (ψ)C(ν)

r (cos(ψ))Jν+r(z). (2.99)

Here the C(ν)
r are Gegenbauer polynomials [63, §18.3] (also known as ultraspherical poly-

nomials), and the formula is valid under Re(ν) > −1. The match is then easy to do, with
ν = nx + ny + 1

2 , and setting


z =

√
(qz ∓ ib)2 + q2

t ,

ψ = arctan
(

qt
±ib− qz

)
,
←→


cos(ψ) = ±ib− qz√

(qz ∓ ib)2 + q2
t

,

sin(ψ) = qt√
(qz ∓ ib)2 + q2

t

.
(2.100)

The Gegenbauer polynomials themselves, though, need to be used as a basis for ex-

http://dlmf.nist.gov/18.3
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pressing the trigonometric polynomial (1+c cos2(θ)) cosnz(θ), and the form of this depends
on whether the polynomial is even or odd:

1 + c cos2(θ) =
(

1 + c

2(ν + 1)

)
C

(ν)
0 (cos(θ)) + c

2ν(ν + 1)C
(ν)
2 (cos(θ)) (2.101a)

for nz = 0, and

[
1 + c cos2(θ)

]
cos(θ) =

( 1
2ν + 3c

4ν(ν + 2)

)
C

(ν)
1 (cos(θ)) + 3c

4ν(ν + 1)(ν + 2)C
(ν)
3 (cos(θ))

(2.101b)
for nz = 1.

Finally, we note that while the original Bessel function from equation (2.96) was of
integer order, the change to Jν in (2.99) makes the final Bessel function have half-integral
order, so it is best expressed as a spherical Bessel function [63, §10.47], via the identity [63,
Eq. (10.47.3)]

jn(z) =
√
π

2z Jn+ 1
2
(z). (2.102)

Putting these ingredients together is a straightforward but tedious exercise algebra
and here we will spare the reader the details. Setting as shorthand n = nx + ny + nz and
s± =

√
q2
x + q2

y + (qz ± ib)2, the spherical Fourier transform reduces to

SFT(q) = (−i)n
∑
±
qnxx qnyy (qz ± ib)nz

[(
1 + c

nz + 1/2
n+ 3/2

)
jn(s±)
sn±

(2.103)

−c
(

(qz ± ib)2

s2
±

− nz + 1/2
n+ 3/2

)
jn+2(s±)

sn±

]
.

With this result in hand, we now analyse the behaviour of this function given the
known specific form of the transformation momentum,

q = a(p + A(ts)) = ap⊥ − iκa
√

1 + p⊥2/κ2 n̂. (2.104)

We care, in particular, about the argument of the Bessel function, the combination s± =√
q2
x + q2

y + (qz ± ib)2, and how it behaves for the specific q of (2.104). As we shall see,
the imaginary components of q make s± predominantly imaginary, and this puts the
spherical Bessel functions in their exponential regime in exactly the right way to provide
the required exponential growth with κa.

To do this in a coordinate-invariant way, we introduce a unit vector û along the
molecular axis, for which we can rephrase the Bessel argument as

s± =
√

q2 ± 2ibû · q − b2. (2.105)

Here the squared q2 is, because of the saddle-point equation (2.46), exactly equal to
−2Ipa2 = −κ2a2, and because a is in the asymptotic regime as κa � 1, this is the

http://dlmf.nist.gov/10.47
http://dlmf.nist.gov/10.47.3
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dominant term. Putting in the explicit q and separating out this dependence, we get

s± =
√
−κ2a2

√√√√1∓ 2i b
κa

û · p⊥
κ
∓ 2 b

κa

√
1 + p⊥2

κ2 û · n̂ + b2

κ2a2 . (2.106)

In this form, it appears that we still have some work to do in pinning down s±, because
the square root

√
−κ2a2 could evaluate to both +iκa and −iκa, but here appearances are

deceptive. More specifically, s± never appears by itself, and its main appearance is in
terms of the form

jn
(√

q2 ± 2ibû · q − b2
)

(
q2 ± 2ibû · q − b2

)n/2 , (2.107)

and here the branch cut from the inner square root exactly cancels out with the one from
the power in the denominator, since the Bessel function is of the form jn(s±) = sn±̃(s±) for
an even function ̃ of s± [63, Eq. (10.53.1)]. Similarly, in its other appearances in (2.103)
s± always appears squared, so the sign in the square root in (2.106) is in fact irrelevant;
to break this ambiguity we simply set it to

s± = +iκa

√√√√1∓ 2i b
κa

û · p⊥
κ
∓ 2 b

κa

√
1 + p⊥2

κ2 û · n̂ + b2

κ2a2 . (2.108)

Writing s± = iσ±, it is clear that jn(s±) = jn(iσ±) is much closer to a modified
Bessel function than an oscillatory one. Specifically, we want its asymptotic behaviour for
moderately large σ±, and we can get it as

jn(s±)
sn±

= jn(iσ±)
(iσ±)n =

√
π

2
Jn+ 1

2
(iσ±)

(iσ±)n+ 1
2

=
√
π

2
in+ 1

2 In+ 1
2
(σ±)

(iσ±)n+ 1
2

through [63, Eq. (10.27.6)]

=
√
π

2
In+ 1

2
(σ±)

σn+ 1
2±
∼ 1

2

(
1− n2 + n

2σ±
+ · · ·

)
eσ±

σn+1
±

through [63, Eq. (10.40.1)],

(2.109)

where both steps now do require Re(σ±) > 0, breaking the sign ambiguity. Here, though
the details of the pre-exponential factors have yet to be worked out, we have an explicit
exponential factor of eσ± ≈ eκa as required.

To confirm the rest of the main dependence on a, we also require the asymptotic
behaviour of s±, which can be obtained by taking the Taylor series of the square root of
(2.108) with respect to 1/κa, leaving

s± ≈ +iκa ± b

 û · p⊥
κ
−

√
1 + p⊥2

κ2 û · n̂

 . (2.110)

Putting in both of these asymptotics into (2.103) and keeping only terms to leading order

http://dlmf.nist.gov/10.53.1
http://dlmf.nist.gov/10.27.6
http://dlmf.nist.gov/10.40.1
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in 1/κa from all the ingredients then results in the asymptotic shape factor

SFT(q) ≈ (−i)n e
κa

κa

vnxx vnyy vnzz
κnx+ny+nz cos

b
 û · p⊥

κ
− i

√
1 + p⊥2

κ2 û · n̂

 (2.111)

×

1− c

(û · p⊥)2

κ2 −
(

1 + p⊥
2

κ2

)
(û · n̂)2 − i

√
1 + p⊥2

κ2
û · p⊥
κ

û · n̂

 .
To leading order, the dependence on a is through the combination eκa/κa, as is required
to cancel out the factor of κa e−κa in (2.89). The rest of the expression then gives the
shape dependence of the form factor.

Figure 2.4: Geometrical relationships between the molecular and the laser (lab) frame.
The x, y and z axis are on the molecular frame, with the internuclear axis û along the z
axis. The laser polarization n̂ is in the x, z plane, with the momentum component p‖ along
it; the transverse momentum vector p⊥ has a component po in the molecular-laser (x, z)
plane, and a shared component py orthogonal to it.

To tie this expression down a bit further, we introduce some additional notation to
link together the molecular frame of reference with the laser, as shown in Figure 2.4.
We take n̂ · û = cos(θ) to give the angle θ between the internuclear axis and the laser
polarization, and û · p⊥ = −po sin(θ) as defining the transverse momentum component in
the molecular-laser plane. With this notation, the leading-order shape factor reads

SFT(q) ≈ (−i)n e
κa

κa

vnxx vnyy vnzz
κnx+ny+nz cos

(
b

(
po
κ

sin(θ) + i

(
1 + p⊥

2

2κ2

)
cos(θ)

))

×

1 + c

po2

κ2 cos(2θ) +
(

1 +
p2
y

κ2

)
cos2(θ)− i

2

√
1 + p⊥2

κ2
po
κ

sin(2θ)

 .
(2.112)
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It is important to note, on the other hand, that the full analytical spherical Fourier
transform SFT(q) as calculated in (2.103) does have some (unphysical) dependence on a,
which is caused by the stack of approximations taken over the course of this chapter. This
dependence disappears for large enough κa, as shown in Fig. 2.5, though in general this
tends to happen for larger boundary radii than the equilibrium point between the laser
and the Coulomb field. In practice, then, one needs to take the boundary radius a at a
point where the shape factor reproduces a shape consistent with the asymptotics, and is
reasonably flat with respect to increases in this radius.

(a) nx = 0, nz = 0 (b) nx = 1, nz = 0

(c) nx = 0, nz = 1 (d) nx = 1, nz = 1

Figure 2.5: Behaviour of the on-axis spherical Fourier transform, with the main asymptotic
behaviour factored out as κa e−κa SFT(q) and evaluated at the temporal saddle point at
zero transverse momentum, as a function of the alignment angle θ and the boundary radius
a, in the asymptotic region of the latter. Here κ = 1, c = 1, b = 2.5, and ny = 0.

Additionally, it is possible to go beyond the leading-order dependence of SFT on a

and produce an asymptotic series for the limit κa � 1 that produces better approxima-
tions to the shape factor (intermediate between the exact integral (2.103) and the leading
asymptote (2.111)) at moderate values of the boundary radius. Unfortunately, even to
subleading order this produces rather unwieldy expressions, so they are omitted here for
brevity, but they are implemented, and documented, in Ref. 9.

More practically, the key feature of the molecular shape factor comes from its behaviour
on axis: that is, for momenta very close to the laser polarization, at p⊥ = 0, since it is
harder for electrons to tunnel into nonzero transverse velocities. Thus, it is the on-axis
shape factor SFT(q)|p⊥=0 that determines most of the effect of the electronic orbital
in question and the molecule’s orientation with respect to the laser field, along with its
first-order dependence on p⊥ at that point; we show both quantities in Fig. 2.6.
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Specifically, it is important to note that the main dependence, through SFT(q)|p⊥=0,
will vanish when the alignment angle θ is such that the laser polarization lies along a
node of the electronic orbital under consideration. In these conditions, ionization can
proceed via direct ionization from other orbitals, but it can also do so via the correlation-
driven mechanism which is derived below and which, as we will explore in chapter 3, relies
crucially on the transverse momentum derivatives of the shape factor.

(a) nx = 0, nz = 0 (− Σg) (b) nx = 1, nz = 0 (B Σu)

(c) nx = 0, nz = 1 (A Πu) (d) nx = 1, nz = 1 (X Πg)

θ θ

Figure 2.6: Behaviour of the on-axis spherical Fourier transform κa e−κa SFT(q)|p⊥=0
(blue) and its derivatives with respect to po (red) and py (green), taken in the asymptotic
region at a = 50. The regime of intermediate a, shown dashed at a = 10, captures most
of the qualitative behaviour but it is not quantitatively accurate. Here κ = 1.2, c = 0.3
and b = 2.5, corresponding to a reasonable model for the CO2 molecule, and the different
geometries are labelled by the orbital symmetry they produce and the corresponding states
of the CO2 molecule. We take ny = 0 for SFT, ∂poSFT, and the symmetry assignments,
and ny = 1 for ∂py

SFT.

2.4 Correlation-driven ionization

We now turn to the correlation-driven ionization mechanism, which is embodied in the
first-order term of the Dyson expansion of the wavefunction in powers of the correlation
potential V n

ee. We last saw this contribution in a split of the total wavefunction of the
form |Ψ(t)〉 = |Ψ(0)(t)〉 + |Ψ(1)(t)〉 in (2.34a), in which the correlation-driven term had
the form

∣∣∣Ψ(1)(t)
〉

= (−i)2∑
n

∫
dk
∫ t

dt′′
∫ t′′

dt′UN (t, t′′)V n
ee(t′′)UN−1(t′′, t′)

∣∣n(t′)
〉

⊗ Une (t′′, t′)
∣∣kn(t′)

〉
×
〈
kn(t′)

∣∣L̂(−)(a)
∣∣nD(t′)

〉
eiIpt

′
, (2.113)
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which we recall from (2.34c).
The fist thing to do here is to tackle the full entangled propagator UN (t, t′), which

we tried to pretend was manageable by using the Dyson expansion to reduce it to a
single separable propagator UN−1(t, t′) ⊗ Une (t, t′) but which, through the principle of
conservation of hard work, is of course still present. And similarly to the first time around,
to deal with this entangling propagator we will continue to pretend that it can be reduced
to the unentangled dynamics, and that

UN (t, t′) ≈ UN−1(t, t′)⊗ Une (t, t′) (2.114)

inside the integral of (2.113). This time, however, we are no longer pushing the nontrivi-
ality away into another corner of the room: instead, we are making the definite assertion
that the entangling interaction, the correlation potential V n

ee, contributes essentially only
to first order in the Dyson series, and that further interactions are negligible.

We therefore make this key physical approximation, to get the correlation-driven con-
tribution as

∣∣∣Ψ(1)(t)
〉

= (−i)2∑
n

∫
dk
∫ t

dt′′
∫ t′′

dt′UN−1(t, t′′)⊗ Une (t, t′′)V n
ee(t′′)UN−1(t′′, t′)

∣∣n(t′)
〉

⊗ Une (t′′, t′)
∣∣kn(t′)

〉
×
〈
kn(t′)

∣∣L̂(−)(a)
∣∣nD(t′)

〉
eiIpt

′
, (2.115)

and now we can begin simplifying this using many of the techniques we used for the direct
ionization channel. Thus, analogously to our definition in (2.35) of the ionization yield,
we have the correlation-driven yield given by

a(1)
n (p,t0) = 〈p| ⊗ 〈n(t0)|UN−1(t0, T )

∣∣∣Ψ(1)(T )
〉

= (−i)2∑
m

∫
dk
∫ T

dt′′
∫ t′′

dt′ 〈n(t0)|UN−1(t0, t′′)⊗ 〈p|Ume (T, t′′)× V m
ee (t′′)

× UN−1(t′′, t′)
∣∣m(t′)

〉
⊗ Ume (t′′, t′)

∣∣km(t′)
〉
×
〈
km(t′)

∣∣L̂(−)(a)
∣∣mD(t′)

〉
eiIpt

′
.

(2.116)

Here, similarly to the direct case in (2.37), we neglect the Stark shifting and field-
induced transitions between the ionic eigenstates, so the ionic states propagate as the
field-free UN−1(t′′, t′) |n(t′)〉 = e−iEn(t′′−t′) |n〉, and we propagate the continuum states
using (2.22). This leaves us, then, with a much simpler expression:

a(1)
n (p, t0) = (−i)2∑

m

∫
dk
∫ T

dt′′
∫ t′′

dt′e+iEn(t′′−t0)e−iEm(t′′−t′)

× 〈n| ⊗
〈
pn(t′′)

∣∣V m
ee |m〉 ⊗

∣∣km(t′′)
〉
×
〈
km(t′)

∣∣L̂(−)(a)
∣∣mD

〉
eiIpt

′
.

(2.117)

In fact, this expression separates completely into an ionization part, with a temporal
integral over t′ – which we term the ionization time – and a temporal integral over t′′,
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which we term the interaction time, giving

a(1)
n (p, t0) = −ie−iEnt0

∑
m

∫
dk
∫ T

dt′′e+i(En−Em)t′′ 〈n| ⊗
〈
pn(t′′)

∣∣V m
ee |m〉 ⊗

∣∣km(t′′)
〉

× (−i)
∫ t′′

dt′e+iEmt′ 〈km(t′)
∣∣L̂(−)(a)

∣∣mD

〉
eiIp,mt

′
. (2.118)

Moreover, the internal integral over the ionization time t′ is exactly of the same form
as the direct ionization amplitude (2.38), with the only difference being that the upper
limit, t′′, is now variable and potentially complex, so we can directly apply the results
from the previous development. The second line of (2.118) is therefore exactly equal to
e+iEmt′′a

(0)
m (k, t′′), and it can be replaced with the final result from (2.72) to give

a(1)
n (p, t0) = −ie−iEnt0

∑
m

∫
dk
∫

dt′′e+i(En−Em)t′′ 〈n| ⊗
〈
pn(t′′)

∣∣V m
ee |m〉 ⊗

∣∣km(t′′)
〉

× eiIp,mts−
i
2

∫ T
ts

(k+A(τ))2dτ
e
−i
∫ t′′
tκ

Um

(∫ τ
ts

k+A(τ ′)dτ ′
)

dτ
Rm(k).

(2.119)

This expression admits a simple interpretation, with the electron being ionized at
the complex time ts into a superposition of channels |m〉 and intermediate momenta k,
and then subsequently interacts with the ion at time t′′ to get to its final channel n and
momentum p. As far as the continuum electron is concerned, then, the main part of the
interaction is the single-electron operator

〈n|V m
ee |m〉 =

〈
n
∣∣∣(Vee − 〈n|Vee |n〉)∣∣∣m〉 . (2.120)

This operator must be handled in the position representation, since the electrostatic in-
teraction is defined as such by definition (2.14c). We therefore encase it inside position
eigenstates to get a single function of position,〈

r′
∣∣∣ 〈n|V m

ee |m〉
∣∣∣r〉 =

〈
r′
∣∣⊗ 〈n| (Vee − 〈n|Vee |n〉) |r〉 ⊗ |m〉 =: δ(r− r′) 〈Vnm(r)〉 , (2.121)

which we encapsulate in the shorthand notation 〈Vnm(r)〉.
Doing the matrix element of (2.119) in the position representation, then, leaves us

with the expression

a(1)
n (p, t0) = −ie−iEnt0

∑
m

∫
dk
∫

dr
∫

dt′′e+i(En−Em)t′′ 〈Vnm(r)〉
〈
pn(t′′)

∣∣r〉 〈r∣∣km(t′′)
〉

× eiIp,mts−
i
2

∫ T
ts

(k+A(τ))2dτ
e
−i
∫ t′′
tκ

Um

(∫ τ
ts

k+A(τ ′)dτ ′
)

dτ
Rm(k).

(2.122)

Here we use the explicit form of the eikonal Volkov states, (2.18), to further pin down this
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ionization yield into the explicit form

a(1)
n (p, t0) = −i

∑
m

e−iEnt0eiIp,mts
∫

dt′′e+i(En−Em)t′′e−
i
2

∫ T
t′′ (p+A(τ))2dτ

× 1
(2π)3

∫
dk
∫

dr 〈Vnm(r)〉Rm(k)ei(k−p)·re
− i

2

∫ t′′
ts

(k+A(τ))2dτ
e−iWnm(r,k,t′′),

(2.123)

where the Coulomb correction now reads

Wnm(r,k, t′′) = −
∫ T

t′′
Um(rL(τ ; r,k, t′′))dτ −

∫ t′′

tκ
Um

(
rL(τ ; 0,k, t′′)

)
dτ

+
∫ T

t′′
Un(rL(τ ; r,p, t′′))dτ. (2.124)

Finally, we address the limits for the interaction-time integration over t′′, which orig-
inally went from −∞ to the large detection time T . However, the t′ integral in (2.118)
only went up to t′′, and this means that for the direct-channel result to hold we need the
integration range over t′′ to be restricted to times after the ionization event ts to which
we’ve collapsed the entire t′ integral. This means, then, that the correlation-driven yield
can be written down as

a(1)
n (p, t0) = −i

∑
m

e−iEnt0eiIp,mts
∫ T

ts
dt′′e+i(En−Em)t′′e−

i
2

∫ T
t′′ (p+A(τ))2dτ

× 1
(2π)3

∫
dk
∫

dr 〈Vnm(r)〉Rm(k)ei(k−p)·re
− i

2

∫ t′′
ts

(k+A(τ))2dτ
e−iWnm(r,k,t′′).

(2.125)

This form for a(1)
n (p, t0) is now essentially ready – or, at least, it cannot be processed

much further without more knowledge about the system in question. (Here the Coulomb
correction (2.124) can use further simplification, but we will not discuss it further and we
will make the reasonable approximation that its behaviour will be similar to the correction
in the direct case.)

There are two main parts of this expression, and they fulfil two different roles. On
one side there is the spatial description, which involves the integrals over r and k, which
determines how the geometry of both channels influences the behaviour of the correlation-
driven channel, and this will be the main focus of the following chapter.

Overarching this geometrical dependence, however, is a more fundamental dynamical
statement about the behaviour of this correlation-driven tunnelling, coming from the tem-
poral integral over t′′ and its various factors. This integral is not trivial, because in shifting
the t′ integral to its complex saddle point ts, we have also brought the starting point of
the interaction-time integral over t′′ to a complex time. Since here, as before, t′′ appears
in exponential factors of the form eiEt

′′ , the imaginary part of t′′ plays a crucial role.
At heart, the temporal dependence in (2.125) contains a conflict between two colliding

factors that try to pull the main contributions to the integral to different regions of t′′, and
the resolution of this conflict is a compromise that makes much of the interaction happen
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inside the tunnelling barrier.
On one side of this conflict is the exponential factor e+i(En−Em)t′′ , which is a phase

for real t′′ but can provide large amplitude changes for the regions where it is complex.
In general, this factor will tend to aid ionization into excited states ionic by letting the
electron ionize from the highest-lying occupied orbital, which is easier to tunnel from, and
then change channels once they’ve gone through much of the tunnelling barrier. In this
case, the initial channel m is the ground ionic state, and the final channel n has a higher
energy, so that

∆Ip,nm = En − Em (2.126)

is a positive quantity. In this regime, the amplitude of the exponential factor is given by∣∣∣e+i(En−Em)t′′
∣∣∣ = e−∆Ip,nm Im(t′′), (2.127)

where in general Im(t′′) will be between 0 and Im(ts) > 0. This exponential dependence
will tend to select interaction times with smaller imaginary parts, relatively far away from
the ionization time ts, and therefore as far into the barrier as possible.

On the other side of this conflict is the spatial dependence, more specifically through
the decay of the interaction potential 〈Vnm(r)〉 at larger distances. As we shall see in
chapter 3, a saddle-point argument on the geometrical integrals over k and r, driven
by the exponential factors exp

(
i (k− p) · r− i

2
∫ t′′
ts

(k + A(τ))2 dτ
)
of (2.125), indicates

that the contributions to spatial integral are mostly concentrated in a region around the
laser-driven trajectory rL(t′′) =

∫ t′′
ts

p + A(τ)dτ , and this will tend to go away from the
origin (and rather quickly so) as t′′ goes from the ionization time ts towards its real part.
Evaluated at this position, 〈Vnm(rL(t′′))〉 will decrease in the same direction that the
exponential factor is increasing.

Taken together, both factors will make most of the interaction come from complex
interaction times at which the electron is still in the mid-barrier regime, which makes
the study of the interaction all the more interesting. In the following chapter we turn,
therefore, to the study of the geometrical effects of this interaction, in the hopes of finding
signatures that will help us show that these mid-barrier interactions are in fact occurring.



Chapter 3

Multi-channel geometrical effects in tunnel ionization

This chapter examines the mechanism of correlation-assisted tunnelling ionization, as ex-
pressed in the correlation-driven term examined in section 2.4. Here we examine the
correlation-assisted contribution in terms of its geometrical features, looking for qualita-
tive traces that can help establish, beyond pure ionization rates, the role of the correlation-
assisted mechanism in tunnel ionization. We find that the direct and correlation-driven
terms can have different geometrical structures, which could then be used as a way to
demonstrate the presence of correlation effects in strong-field ionization.

Some of the material in this chapter has appeared previously in reference

1. E. Pisanty and M. Ivanov. Momentum transfers in correlation-assisted tunnel-
ing. Phys. Rev. A 89 no. 4, p. 043 416 (2014). arXiv:1309.4765.

and in the author’s MRes report,

7. E. Pisanty. Under-the-barrier electron-ion interaction during tunnel ionization.
MRes report, Imperial College London (2012). arXiv:1307.7329.

This chapter mostly follows the lines of Ref. 1.

3.1 Electron correlation in strong-field ionization

Throughout much of its history, and for most of its applications, strong-field physics can
essentially be understood as a single-electron game, mostly because the post-ionization
part of the dynamics, with the electron at the mercy of the radiation field, is at heart a
single-electron phenomenon.

However, this is at odds with the rest of atomic physics, which breaks down completely
if electron correlation and exchange are not included as core parts of the theory. Within
photoionization alone, for example, multi-electron effects appear in a multitude of phe-
nomena, which include autoionizing states [113], giant resonances [114], shake-off [115],
shake-up [116], Auger and frustrated Auger decay [117], interatomic Coulomb decay [118],
and ultrafast correlation-driven hole migration [119, 120] among many others. These
correlation-driven mechanisms often leave clear traces that can be used to identify them,
but the distinction between different mechanisms can also be blurry, as in the case of
separating the contributions of shake-up and post-ionization interaction [121].
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Strong-field ionization, however, mostly works as a single-electron theory, as attested by
the wide success of the Strong-Field Approximation in its many forms, the overwhelming
majority of which are single-electron theories, or include the effect of the ionic electrons at
the self-consistent-field level [122]. The inclusion of multielectron effects beyond this level
was triggered by the realization that the molecular ions produced by strong-field ionization
are often electronically excited [123, 124], and that these excitations affect all subsequent
processes [125–129]. Recent experiments [130, 131] and ab initio simulations [132, 133]
confirm that, for molecules in strong fields, electronic excitations during the ionization
process are the rule rather than an exception.

Two main mechanisms are responsible for creating an ion in an excited state after
optical tunnelling: the laser may remove an electron from a low-lying orbital, leaving the
ionic core excited [123, 125–129, 134–139], shown schematically in Fig. 3.1(a), or the elec-
tron may depart from the highest occupied molecular orbital (HOMO), and subsequently
excite the core through a Coulomb interaction. This can happen inside the tunnelling
barrier [140], shown in Fig. 3.1(b), or after the tunnelling step [123, 124], as shown in
Fig. 3.1(c).

(a) (b) (c)

Figure 3.1: Three possible ionization processes which leave the core excited: the ionized
electron may depart from a sub-HOMO orbital (a), or it may depart from HOMO and
subsequently interact with the core, either inside the tunnelling barrier (b) or after the
ionization step (c).

Analyzing strong-field ionization in a way that permits the description of electronic
excitations in the ion that is left behind (and, indeed, that allows the photoelectron to
return and interact with this excited ion), and to describe it in an analytical form that
can help us grasp the physical mechanisms at play, is far from an easy task. Fortunately,
though, our ARM theory of photoionization is perfectly capable of handling this, and
indeed it was initially developed with this in mind [68]. However, the original ARM
implementations only considered the total ionization rates, and these do not readily yield
direct, qualitative traces of the multielectron interactions that help shape the tunnelling
process.

This chapter looks for such traces in the angular distribution of the photoelectron;
we show that the correlation-assisted tunnelling, as shown in Figs. 3.1(b) and (c), pro-
duces wavepackets with nontrivial spatial structure as compared with the direct tunnelling
of Fig. 3.1(a). The correlation-driven structures, then, should interfere with the direct
channel to provide clear traces, detectable in angle-resolved photoelectron spectra, that
multielectron dynamics are important during the tunnelling step.

The motivation for focusing on the transverse momentum distribution is simple. If the
laser field directly removes an electron from some orbital, then the outgoing wavepacket
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will carry the imprints of the spatial structure of the orbital it came from [141]. On the
other hand, if the electron switches channels by inducing transitions in the ion, then the
spatial structure of the outgoing wavepacket will be due to the original orbital and the
nature of the ionic transition. The resulting distribution can then be different to that of
the direct removal, and it should therefore be possible to use it to distinguish the two
contributions.

Additionally, the electron angular distribution is an important observable in its own
right [141–144], both for the information it yields directly and for its strong effect on
subsequent recollision dynamics, including electron-ion diffraction and holography [37–
40]. Moreover, the observable coherence of the hole left in the ion during multi-channel
ionization is directly conditioned by the overlap of the corresponding continuum electron
wavepackets, since the excited ion is likely to be entangled with the ion [145]. It is therefore
desirable to have analytical approximations for the photoelectron wavepackets, which then
permit one to gauge when a small overlap between the photoelectron states implies a low
available coherence for any subsequent pump-probe experiments on the state of the ion.

We will therefore analyse in detail the angular distributions of direct ionization from or-
bitals below the highest occupied molecular orbital (HOMO) and of the correlation-assisted
contribution. The essentials of these distributions are determined by the symmetries of
the orbitals and transitions involved, which will then allow us to look for qualitative dif-
ferences in addition to quantitative predictions. We will find that, in certain geometries,
the correlation-driven yield does indeed differ significantly from the shape of the direct
ionization wavepacket.

We will focus, as in the previous chapter, on the channel-resolved photoelectron mo-
mentum yield an(p, ) as our primary physical observable. At face value, this means that
the ideal experiments will be angle- and energy-resolved photoelectron spectra, observed in
coincidence with ionic state detection on aligned molecules. Such photoelectron-photoion
are now becoming standard for ionic states that lead to well-defined fragments [130, 146].
Alternative experiments could include recollision-based imaging experiments such as two-
dimensional high-harmonic spectroscopy [147] and laser-induced electron holography [37,
40] and diffraction [37–39, 129], which are all intrinsically sensitive to the ionic state.
Moreover, the photoelectron spectrum for the direct electrons can now be measured with
high accuracy [148].

Specifically, we will consider the tunnel ionization of CO2, with the laser polarization
pointing along the internuclear axis, as shown in Fig. 3.2. The leading perpendicular tran-
sition is from the ground-state channel of CO+

2 , X Πg, to its second excited channel, B Σu.
These correspond to the removal of an electron from HOMO and from HOMO−2, respec-
tively, which are depicted in Figs. 3.2(b) and (c).

Here HOMO has a nodal plane along the laser polarization (as does the HOMO−1
orbital, A Πg), with two lobes of opposite phase, which means that the outgoing wavepacket
inherits this structure and it is also highly suppressed, making B Σg a substantial contrib-
utor to the ionization, despite its much higher ionization potential [125, 126, 141]. The
position-space node is similarly reflected by a nodal plane at the origin in the momentum-
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Figure 3.2: Correlation-assisted ionization of CO2. An electron can ionize from HOMO (a)
and change to an excited channel (b) in a mid-barrier transition (c). This subjects it (c)
to the dipole potential of the transition charge (g), which changes the relative phase of
the two lobes (d). This double-slit wavefunction then diffracts to multiple lobes (e). This
contrasts to direct ionization on the excited B channel, which has a single lobe (f).

space representation of the electron coming from the X orbital, embodied in the R(p)
shape factor of the previous chapter.

At the moment of the correlation interaction t′′, which we will integrate over as per
Eq. (2.125), this wavepacket is impulsively subjected to the correlation potential 〈Vnm(r)〉,
which in this example corresponds to the electrostatic field of the transition charge. This
is of the essential form 〈B|r〉〈r|X〉, as depicted in Fig. 3.2(g), and since the transition
charge is dipolar the potential will essentially be of the form dBXx/r

3, in the reference
frame of Fig. 3.2(g), with a node along the same direction as our X-ionized wavepacket.∗

In momentum space, our linear ∝ x potential is therefore proportional to the momentum
operator ∂

∂kx
, and it therefore transforms our two-lobed wavefunction to the three-lobed

wavepacket shown in Fig. 3.2(e).
The physical picture is most clearly cast in terms of angular momentum. The X

channel is a Π state, which means that the outgoing electron and the hole in the core
both have angular momenta L = ±1 about the laser polarization, in opposite directions.
The B channel, on the other hand, is a Σ state with zero angular momentum in the core.
Inducing an X→ B transition thus requires the outgoing electron to ‘wind down’ the core,
returning its angular momentum through the reaction force. This exchange of transverse
momentum creates the central lobe.

The lateral lobes in the final momentum distribution are interference effects coming
from the interaction region. In position space, the initial tunnelling wavepacket is Gaussian
in the transverse direction [149] with a node of the form ψ ∝ xe−

1
2τ x

2 . The impulsive
application of the dipole potential transforms it to the form ψ′ ∝ x2e−

1
2τ x

2 , as depicted in
Fig. 3.2(d); the final momentum distribution is the Fourier transform of this wavefunction.
The situation is then essentially interference from a double slit, formed by the two same-
sign lobes of this wavefunction, with three of the fringes visible.

∗It is important to note, on the other hand, that there is an exactly equivalent channel along the y axis,
coming from the X Πg,y orbital, which will restore the system’s axial symmetry to our result.
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3.2 The geometric saddle-point argument

Having painted an intuitive picture of the process, we now move on to a more formal
analysis of the resulting angular distributions. We have built, in chapter 2, most of the
machinery we need, in the form of expressions (2.72) for the direct yield and (2.125) for
the correlation-assisted contribution, which together read

a(0)
n (p, t0) = e−iEnt0eiIp,nts+

i
2

∫ ts
T

(p+A(τ))2dτe
−i
∫ T
tκ
Un

(∫ τ
ts

v(τ ′)dτ ′
)

dτ
Rn(p), (3.1a)

a(1)
n (p, t0) = −i

∑
m

e−iEnt0eiIp,mts
∫ T

ts
dt′′e+i(En−Em)t′′e−

i
2

∫ T
t′′ (p+A(τ))2dτ

× 1
(2π)3

∫
dk
∫

dr 〈Vnm(r)〉Rm(k)ei(k−p)·re
− i

2

∫ t′′
ts

(k+A(τ))2dτ
e−iWnm(r,k,t′′).

(3.1b)

As noted above, one of the main factors that determine these amplitudes is the expo-
nential term in the ionization time, of the form eiIp,mts , where the imaginary part of the
ionization saddle-point time ts gives the amplitude an exponential dependence on the ion-
ization potential Ip,m to the given ionic state. Because of this strong dependence, these
contributions will generally be limited to one or a few ionic states, and we therefore break
the sum down into its different constituents

a(1)
nm(p, t0) = −ie−iEnt0eiIp,mts

∫ T

ts
dt′′e+i(En−Em)t′′e−

i
2

∫ T
t′′ (p+A(τ))2dτ

× 1
(2π)3

∫
dk
∫

dr 〈Vnm(r)〉Rm(k)ei(k−p)·re
− i

2

∫ t′′
ts

(k+A(τ))2dτ
e−iWnm(r,k,t′′)

(3.1c)

in the understanding that only their full sum, a(1)
n (p, t0) = ∑

m a
(1)
nm(p, t0) is of interest.

Moreover, since in this chapter we are interested in the geometrical aspects of this ampli-
tude, to which the Coulomb correction e−iWnm(r,k,t′′) contributes weakly, we will neglect
it for the multi-channel analysis, assuming that it behaves mostly like the single-electron
correction which we will examine in chapters 5 and 6.

As we mentioned in the previous chapter, to get a good sense of how the correlation-
assisted amplitude (3.1c) behaves, it is generally necessary to have explicit values for the
interaction potential 〈Vnm(r)〉 and the initial shape factor Rm(k), since these are crucial
ingredients of the geometric integrals over r and k. However, there is still more that we
can say about the other two factors of the integrand, the exponential terms

exp
(
i (k− p) · r

)
exp

(
− i2

∫ t′′

ts
(k + A(τ))2 dτ

)
, (3.2)

which also carry a strong dependence on both integration variables.
Moreover, this dependence is rather simple: although it includes an explicit integral

over τ , and a variable dependence on t′′ which will later be integrated over, the exponent
in this case is still simply a quadratic function of k, which is in general relatively easy
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to handle. If this quadratic dependence on k (and, as we shall show, later on also on
r) is sharp enough, we can hope that it will be comparable to the dependence of Rm(k)
and 〈Vnm(r)〉 or faster, and that a saddle-point argument can apply. In any case, it is
worthwhile to study this aspect of the structure of the integrand.

This is relatively easy to do, and it amounts to expanding the square in (3.2), isolating
the integral to powers of A(τ), and completing the square on k, which yields

i (k− p) · r− i

2

∫ t′′

ts
(k + A(τ))2 dτ = − i2(t′′ − ts)(k− ks(r))2 − i

2A
2(t′′)

+ i/2
t′′ − ts

[
r2 − 2r ·

∫ t′′

ts
(p + A(τ))dτ + A(t′′)2

]
(3.3)

in terms of the encapsulated integrals A(t′′) =
∫ t′′
ts

A(τ)dτ and A2(t′′) =
∫ t′′
ts

A(τ)2dτ , and
the central momentum

ks(r) = 1
t′′ − ts

(
r−

∫ t′′

ts
A(τ)dτ

)
. (3.4)

Here, however, completing the square with respect to the linear term in r · k now yields
a quadratic term in r in the exponent, which also demands to be treated similarly. Thus,
completing the square with respect to the central position

rs(p) =
∫ t′′

ts
(p + A(τ))dτ (3.5)

we get

i (k− p) · r− i

2

∫ t′′

ts
(k + A(τ))2 dτ = − i2(t′′ − ts)(k− ks(r))2 + i/2

t′′ − ts
(r− rs(p))2

− i

2

∫ t′′

ts
(p + A(τ))2dτ. (3.6)

This means, then, that the geometrical integration in (3.1c) can be broken down into
a sequence of integrals against gaussian-like kernels, as

a(1)
nm(p, t0) = −ie−iEnt0eiIp,mts

∫ T

ts
dt′′e+i(En−Em)t′′e−

i
2

∫ T
t′′ (p+A(τ))2dτe

− i
2

∫ t′′
ts

(p+A(τ))2dτ

× 1
(2π)3

∫
dr e

i/2
t′′−ts

(r−rs(p))2
〈Vnm(r)〉

∫
dke−

i
2 (t′′−ts)(k−ks(r))2

Rm(k)

(3.7)

where, moreover, the p-dependent phases come together into a single t′′-independent in-
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tegral identical to the factor in (3.1a), giving

a(1)
nm(p, t0) = −ie−iEnt0eiIp,mts+

i
2

∫ ts
T

(p+A(τ))2dτ
∫ T

ts
dt′′e+i(En−Em)t′′

× 1
(2π)3

∫
dr e

i/2
t′′−ts

(r−rs(p))2
〈Vnm(r)〉

∫
dk e−

i
2 (t′′−ts)(k−ks(r))2

Rm(k). (3.8)

Here is where the saddle-point argument comes in. If the molecular geometrical fac-
tors Rm(k) and 〈Vnm(r)〉 are relatively slow compared to the two exponentials, which is
generally the case, then we are justified in considering them as constant and doing the
gaussian integrals explicitly. In that case, then, the momentum integral evaluates as

∫
dk e−

i
2 (t′′−ts)(k−ks(r))2

Rm(k) =
( 2π
i(t′′ − ts)

)3/2
Rm(ks(r)), (3.9)

and this feeds into the position integral to give the remarkable simple result

1
(2π)3

∫
dr e

i/2
t′′−ts

(r−rs(p))2
〈Vnm(r)〉

( 2π
i(t′′ − ts)

)3/2
Rm(ks(r))

= 1
(2π)3

( 2π
i(t′′ − ts)

)3/2 ( 2π
−i/(t′′ − ts)

)3/2
〈Vnm(rs(p))〉Rm(ks(rs(p)))

= 〈Vnm(rs(p))〉Rm(ks(rs(p))). (3.10)

One notable aspect of this development is that the saddle-point momentum (which,
regardless of the validity of the geometrical saddle-point approximation, is where the two
gaussian factors are concentrated) simplifies rather drastically, and it simplifies to

ks(rs(p)) = 1
t′′ − ts

(
rs(p)−

∫ t′′

ts
A(τ)dτ

)

= 1
t′′ − ts

(∫ t′′

ts
(p + A(τ))dτ −

∫ t′′

ts
A(τ)dτ

)
= p, (3.11)

that is, to the final measured momentum. More physically, this states that, within the
approximations we have used, the Coulomb correlation interaction via 〈Vnm(r)〉 between
the photoelectron and the ionic core does not change the photoelectron’s momentum or
its kinetic energy, regardless of whether it is still under the tunnelling barrier or already
outside it, but it does change the final energetic state of the ion.

(This is, of course, an approximation as far as the energy conservation law is concerned,
and it is valid when ∆Ip � Ip. Then, the modification of the outgoing trajectory is small,
and the paradox is somewhat reduced. This approximation is well justified, since if ∆Ip
is large then the highest-lying molecular orbital will completely dominate the ionization.)

To make this somewhat more explicit, under the geometric saddle-point approximation
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the correlation-driven yield reduces to the form

a(1)
nm(p, t0) = −ie−iEnt0eiIp,mts+

i
2

∫ ts
T

(p+A(τ))2dτRm(p)
∫ T

ts
e+i(En−Em)t′′ 〈Vnm(rL(t′′)

)〉
dt′′,

(3.12)

which splits into a prefactor exactly equal to the direct yield (3.1a) (aside from Coulomb
factors, which we’re neglecting in this chapter) and a temporal integral over the interaction,
where we have re-labelled the position saddle point as

rL(t) =
∫ t

ts
[p + A(τ)]dτ, (3.13)

the laser-driven trajectory that starts at the origin at complex time ts and has asymptotic
momentum p. In this form, (3.12) now requires explicit integration over the interaction
time t′′ of the correlation interaction potential 〈Vnm(rL(t′′))〉, so in general this will have
to be done numerically once a specific potential and momentum are fixed.

3.3 A solvable model

In general, the saddle-point analysis just presented works fairly well, but it is concerning
that the shape factor of the direct-tunnelling process, Rm(p), is retained intact without
any change in the central momentum ks = p, in a process which should deliver some form
of momentum kick to the outgoing photoelectron when it interacts with the ionic core on
its way out.

There is, then, some tension between the physical expectation of a more specific change
in the photoelectron’s momentum and the mathematical expectation that, for reasonable
orbital shape factors Rm(k) and correlation interaction potentials 〈Vnm(r)〉, the saddle-
point approximation should work well. This tension motivated, in previous work reported
in the author’s MRes report [7], an explicit calculation using reasonable multipolar models
for both the shape factor and the interaction potential. If one compares those results
with the ones from the saddle-point argument, a painful fact appears: the saddle-point
approximation can fail, and rather loudly so, in this situation.

The explicit calculation of Ref. 7 will not be repeated here, as it is rather technical
and space-intensive. Instead, this section will develop a simple toy model – a thoroughly
boiled down version of the full calculation – for which the geometric integrals of (3.1c) can
be integrated explicitly to a result that disagrees with the saddle-point result. Moreover,
this result completely encapsulates the reasons for this disagreement. As such, this toy
model allows us to decide in what situations the geometrical saddle-point approximation
is valid, and it points to how to fix it when it breaks.

In terms of actual calculations for real molecules, the correlation potentials integrated
over in (3.12) and its modifications must be taken from quantum chemical calculations,
and we will examine in chapter 4 what happens when we require those potentials at
the complex positions demanded by the laser-driven trajectory (3.13), which does impose
nontrivial restrictions. Nevertheless, in general it is not necessary to resort to the model
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potentials of Ref. 7 for calculations, and the simplified toy model we develop here offers
an easier insight into why the geometrical saddle-point calculations need to be modified.

In short, the failure of the geometrical saddle-point approximation for (3.1c) occurs
when it predicts a zero or near-zero result, through a zero of Rm(k), 〈Vnm(r)〉 or more
usually both. In those conditions, the saddle-point approximation – in reality, the leading
term of an asymptotic series – becomes comparable with, or smaller than, the sub-leading
term of that series, so both terms need to be included. Doing this then returns the
approximation to excellent agreement.

To appropriately model these zeroes, we refer explicitly for our toy model to the transi-
tion we chose, the X→ B transition in CO2 aligned along the laser polarization, as shown
earlier in Fig. 3.2. In this configuration, the initial X Πg orbital has a node along the laser
polarization, so its shape factor is of the form

Rm(k) = Cm(kz)kx = C0,m√
iS′′V (ts)

kx. (3.14)

The correlation interaction potential, on the other hand, as defined in (2.121), is caused
by the overlap density between the X and B orbitals, shown in Fig. 3.2(g), which as we
argued earlier must also have a node along the laser polarization. The simplest model,
then is a dipolar interaction, so we take

〈Vnm(r)〉 = dmnx

(z2 + σ2)3/2 . (3.15)

This is a standard dipolar interaction, going down as 1/r3, where we’ve replaced r by the
longitudinal coordinate z for simplicity and to reflect the generally small angle of ioniza-
tion, and we’ve added a softening by σ to account for the finite size of the molecular dipole
charge. This potential does not account for all of the true potential’s spatial variation,
but it captures the essence that interests us in this chapter.

We can now put in these explicit factors into the geometrical factors of the correlation-
assisted yield (3.1c), and this gives us

Igeom = 1
(2π)3

∫
dk
∫

dr 〈Vnm(r)〉Rm(k)ei(k−p)·re
− i

2

∫ t′′
ts

(k+A(τ))2dτ

= 1
(2π)3

∫
dk
∫

dr dmnx

(z2 + σ2)3/2Cm(kz)kxei(k−p)·re
− i

2

∫ t′′
ts

(k+A(τ))2dτ

= IxIyIz, (3.16)

a well-defined geometrical integral that can now be tackled directly, and which moreover
splits cleanly into component parts.

From these, the y component is essentially trivial, since at

Iy = 1
2π

∫
dky

∫
dy ei(ky−py)ye−

i
2 (t′′−ts)k2

y (3.17)

it is a pair of simple gaussian integrals, so the saddle-point result is exact, giving Iy = 1
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as per (3.10). Similarly, the longitudinal z component can generally be well approximated
by the saddle-point integration, as long as Cm(kz) is slow enough, in which case that
integral reads

Iz = 1
2π

∫
dkz

∫
dz Cm(kz)

(z2 + σ2)3/2 e
i(kx−px)xe

− i
2

∫ t′′
ts

(kz+Az(τ))2dτ

= Cm(pz)
(z(t′′)2 + σ2)3/2 e

− i
2

∫ t′′
ts

(pz+Az(τ))2dτ
, (3.18)

exactly analogously to the previous case.
The problem, as expected, is in the x part of the geometrical integral, since this is the

direction where we have put both of the relevant nodes, in x and in kx:

Ix = 1
2π

∫
dkx

∫
dx dmnxkxei(kx−px)xe−

i
2 (t′′−ts)k2

x . (3.19)

This is, again, pretty close to a gaussian integral, and it can be done exactly. In fact,
for the first step of integration, over kx, the saddle-point method is again exact, since the
prefactor splits as

kx = (kx − k(s)
x ) + k(s)

x , (3.20)

where the first term is odd about k(s)
x and gives a zero integral with respect to the even

gaussian kernel, leaving only the constant term at the saddle point. Splitting the exponent
as in (3.6), then, gets us

Ix = dmn
2π e−

i
2 (t′′−ts)p2

x

∫
dxx e

i/2
t′′−ts (x−x(s))2 ∫

dkx kx e
− i

2 (t′′−ts)
(
kx−k(s)

x

)2

= dmn
2π

( 2π
i(t′′ − ts)

)1/2
e−

i
2 (t′′−ts)p2

x

∫
x k(s)

x e
i/2

t′′−ts (x−x(s))2

dx, (3.21)

where the saddle point as per (3.4) is given by k(s)
x = x/(t′′− ts), so the integral is given by

Ix = dmn
2π

( 2π
i(t′′ − ts)

)1/2 e−
i
2 (t′′−ts)p2

x

t′′ − ts

∫
x2 e

i/2
t′′−ts (x−x(s))2

dx (3.22)

with a saddle point at x(s) = (t′′ − ts)px.
Here, finally, lies the root of the failure of the saddle-point approximation for the

geometrical integrals, at the failure of the approximation for integrals of the form∫
x2 e

i/2
t′′−ts (x−x(s))2

dx. (3.23)

At low transverse momenta, px ≈ 0, the saddle point x(s) = (t′′− ts)px is very close to the
quadratic zero of the prefactor at x = 0, which means that the saddle-point approximation
when taken naively will yield a zero value for the integral. However, even at px = x(s) = 0,
the area under the curve x2e−x

2 , shown in Fig. 3.3, is simply not zero.
This simply means, of course, that the saddle-point approximation needs to be modified

to take explicit care of this possibility. In its usual form, approximating an integral of the
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Figure 3.3: Plots of e−x2 and x2e−x
2 as functions of x, with the (nonzero) area under the

latter shaded in blue.

form
∫ B
A F (ζ)eρϕ(ζ)dζ by the value F (ζs)eρϕ(ζs) of its integral at the saddle point ζs comes

from neglecting the spatial variation of F (ζ) near the saddle point, i.e., from replacing it
with its zeroth-order Taylor expansion there. For cases like x2e−x

2 , one simply needs to
take an appropriate number of terms in the Taylor series, which – like

∫
x2e−x

2dx – can
also be integrated exactly.

Mathematical Aside 3.1. The saddle-point approximation for saddle
points near zeros of the prefactor

To make this more precise in general, consider again an analytic function F

which varies slowly with respect to the analytic exponent ϕ, integrated as∫ B
A F (ζ)eρϕ(ζ)dζ over a contour that includes a single saddle point ζs such that
ϕ′(ζs) = 0. Taking an N -term Taylor expansion for F , and the leading-order
expansion for ϕ, at ζs gives an expansion of the form

∫ B

A
F (ζ)eρϕ(ζ)dζ ≈

2N∑
n=0

F (n)(ζs)
n! eρϕ(ζs)

∫ B

A
(ζ − ζs)ne

1
2ρϕ

′′(ζs)(ζ−ζs)2dζ, (3.24)

with only the leading order term in the expansion of ϕ contributing because of
the exponential effect of a large ρ.

In this expansion, all the odd powers of ζ − ζs disappear, because they give an
integrand of odd overall symmetry about ζs, leaving only the even terms of the
form ζ2ne−ζ

2 integrated over a contour which (in the asymptotic regime of ρ→∞)
is much longer than the dimensions of the gaussian envelope. Extending the
contour to infinity, the integrals can then be performed exactly [105, 107], and
this gives the approximation

∫ B

A
F (ζ)eρϕ(ζ)dζ ≈

√
2π
ρ

eρϕ(ζs)

[−ϕ′′(ζs)]1/2
N∑
n=0

(−1)n
n!

F (2n)(ζs)
(2ρϕ′′(ζs))n

. (3.25)

In general, the Taylor series should not be taken to too high a degree N , as this
would push the relevant contributions too far from the saddle point and closer to
points where the ends of the contour, or other saddles, could interfere. In a formal
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sense, the approximation (3.25) only works as an asymptotic series, in which more
terms can only be included when the asymptotic parameter ρ is large enough.
For our purposes, though, this expansion serves its purpose at the leading-term
level, except when the prefactor is too small at the saddle point, in which case
only one or two additional terms need to be included.

Coming back to our integral, we now see that the saddle-point approximation is again
exact – if taken to the second order, which is of course the exact integration we want.
Thus, we have

∫
x2 e

i/2
t′′−ts (x−x(s))2

dx =
( 2π
−i/(t′′ − ts)

)1/2 ((
x(s)

)2
+ i(t′′ − ts)

)
, (3.26)

where the quadratic term in x(s) ∝ px is the usual saddle-point contribution, which is
dominated at low px by the second-order term, a constant with respect to px. Putting in
this integral into Ix, then, we have the exact expression

Ix = idmne
− i

2 (t′′−ts)p2
x

(
1− i(t′′ − ts)p2

x

)
e−

i
2 (t′′−ts)p2

x , (3.27)

and this is what determines the angular profile of the correlation-driven wavefunction for
this geometry.

Here there are several observations worth making. The first is that the angular dis-
tribution for this cross-channel is indeed very different to what we would have obtained
using the direct saddle-point argument, as shown in Fig. 3.4. The angular profile for this
channel now has a nontrivial structure with sign changes across the distribution, and this
would not be obtained otherwise. Moreover, the angular structure of the cross channel
is distinct from that of the direct channel, so their final interference – at amplitudes and
phases still to be determined – will in general also have an interesting angular variation.

Somewhat more physically, it is important to remark that the central lobe of Fig. 3.4
is purely a wave phenomenon, caused by the Fourier transformation, via eipxx, of the
gaussian-with-a-hole wavefunction that results from taking the two-lobed gaussian that
results from the direct tunnelling in the initial channel, of the form kxe

−∆tk2
x , and multi-

plying it by a transition operator proportional to 〈Vnm(r)〉 ∝ x. That is, as tunnelling goes
on, the wavefunction forms in position space in the form x2eix

2/∆t, and this looks (since
∆t is imaginary) much like the function in Fig. 3.3. In essence, this is a double-slit wave-
function, as depicted in Fig. 3.2, and the momentum distribution determined by (3.27) is
precisely the far-field diffraction pattern caused by this double slit. To make this a bit
more interesting, though, since the pattern forms primarily while t′′ is still complex and
the photoelectron is still inside the tunnelling barrier, the far-field angular distribution
shown in Fig. 3.4 is a diffraction pattern that originates from a matter-wave double slit
that occurs inside a tunnelling barrier, as shown in the step from (d) to (e) in Fig. 3.2.
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Figure 3.4: Momentum-resolved ionization yield for the X→ B perpendicular dipole tran-
sition in parallel-aligned CO2, with the corresponding direct amplitude in the inset. The
dashed curve is the prediction from the spatial saddle-point approximation. The parame-
ters used are F = 0.05 a.u. and ω = 0.057 a.u. (so I = 9× 1013 W/cm2 and λ = 800 nm),
dBX = 0.175 a.u., σ = 2.19 a.u., C0,X = 0.23 a.u., C0,B = 0.18 a.u., Ip,X = 0.5064 a.u., and
Ip,X = 0.6644 a.u.

3.4 Modified saddle-point arguments for real molecules

As we have seen, the saddle-point approximation can fail when compared to exact calcu-
lations for toy models of experimentally relevant geometries. Unfortunately, the route of
exact calculation faces a rather steep uphill climb if it is to describe realistic molecules.
One such example is the calculation in Ref. 7, which models the molecule via relatively
simple descriptors of the form

Rm(k) = C(kz)eim1φkk
|m1|
⊥ and 〈Vnm(r)〉 = Q`m2

r`+1 Y`m2(θ, φ), (3.28)

and still only obtains a result in series form. For a realistic molecule, this is an unsatisfac-
tory model because in the neighbourhood of the molecule the presence of ionic electrons
makes the correlation interaction potential 〈Vnm(r)〉 a solution of the Poisson (rather than
the Laplace) equation. Moreover, obtaining a good model for a given molecule in terms
of multipolar potentials is not particularly easy. Other analytically integrable models are
also possible, but they also present significant challenges.

In general, the electronic structure of the remaining ion – the ionic states {|n〉} and the
properties that emanate from them – is a problem for quantum chemistry, and indeed the
discipline has much to say on the subject of our correlation interaction potential 〈Vnm(r)〉.
While the numerical, quantum chemical evaluation of 〈Vnm(r)〉 is still the cleanest and
simplest way to the quantity, unfortunately there are some rather fundamental difficulties
and limitations to computing this quantity when it is queried at the complex trajectories
that interest us, which we will explore in chapter 4.
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In this paradigm, of course, exact analytical integration of the geometrical integrals is
ruled out, since 〈Vnm(r)〉 can only be queried numerically. This is a reasonable solution
in the saddle-point approximation in which (3.8) is reduced to (3.12) giving

a(1)
nm(p, t0) = −ie−iEnt0eiIp,mts+

i
2

∫ ts
T

(p+A(τ))2dτ
∫ T

ts
dt′′e+i(En−Em)t′′

× 1
(2π)3

∫
dr e

i/2
t′′−ts

(r−rs(p))2
〈Vnm(r)〉

∫
dk e−

i
2 (t′′−ts)(k−ks(r))2

Rm(k)

≈ −ie−iEnt0eiIp,mts+
i
2

∫ ts
T

(p+A(τ))2dτ
∫ T

ts
Rm(p)

〈
Vnm

(
rL(t′′)

)〉
e+i(En−Em)t′′dt′′,

(3.29)

since here 〈Vnm(r)〉 only needs to be queried at a limited set of positions for the temporal
integration. As we’ve seen, though, this direct saddle-point approximation is flawed, but
the roots of the flaw are clear and it can be fixed by suitable modifications of the saddle-
point approximation. Doing this then permits us to perform the temporal integral over t′′

with only one (or a few) evaluations of 〈Vnm(r)〉 per temporal integration point.
To reformulate the geometrical saddle-point method, then, we need to look for the

quadratic zeros of the r and k integrand. In general, though, we can be rather more
specific than that, since if only p orbitals are involved, with linear nodes at most, then
the emergence of zeroes is always as in (3.21) and (3.22), with linear nodes in both fac-
tors combining to make a more complicated quadratic zero. In terms of our previous
development, this means that we can interrupt the saddle-point method just after the k
integration of (3.9), at which point the ionization yield reads

a(1)
nm(p, t0) = −ie−iEnt0eiIp,mts+

i
2

∫ ts
T

(p+A(τ))2dτ
∫ T

ts
dt′′e+i(En−Em)t′′

× 1
(2π)3

( 2π
i(t′′ − ts)

)3/2 ∫
dr 〈Vnm(r)〉Rm(ks(r))e

i/2
t′′−ts

(r−rs(p))2
. (3.30)

Here, then, we apply our extended saddle-point approximation (3.25), going to sec-
ond order in the derivatives of the prefactor. In contrast to our original development
of the approximation, though, here we have multiple dimensions to handle, so taking the
subleading terms should be interpreted as taking only the second derivative in each dimen-
sion and adding them up (i.e., ignoring terms of the form ∂2ϕ

∂x2
∂2ϕ
∂y2 ), which cleanly yields a

rotation-invariant Laplacian of the r-dependent prefactor.
This means, then, that our previous (3.10) should be reformulated to read



3. Multi-channel geometrical effects in tunnel ionization 87

1
(2π)3

( 2π
i(t′′ − ts)

)3/2 ∫
dr 〈Vnm(r)〉Rm(ks(r))e

i/2
t′′−ts

(r−rs(p))2

= 1
(2π)3

( 2π
i(t′′ − ts)

)3/2 ( 2π
−i/(t′′ − ts)

)3/2
×

×
[
〈Vnm(rs(p))〉Rm(ks(rs(p))) + i

2(t′′ − ts)∇2
r

(
〈Vnm(r)〉Rm(ks(r))

)
rs(p)

]
= 〈Vnm(rs(p))〉Rm(ks(rs(p))) + i

2(t′′ − ts)∇2
r

(
〈Vnm(r)〉Rm(ks(r))

)
rs(p)

.

(3.31)

Moreover, here the second derivative that acts on the product 〈Vnm(r)〉Rm(ks(r)) really
only needs to pick out the cross terms that arise from the conjunction of linear zeroes in
each factor. As such, it can generally be simplified to the form

∇2
r

(
〈Vnm(r)〉Rm(ks(r))

)
≈ 2 (∇r 〈Vnm(r)〉) · (∇rRm(ks(r)))

= 2
t′′ − ts

(∇r 〈Vnm(r)〉) · (∇kRm(ks(r))) (3.32)

with the factor of t′′− ts coming from the derivative of ks(r) with respect to r as per (3.4).
Putting this approximation into (3.31) then gives us

1
(2π)3

( 2π
i(t′′ − ts)

)3/2 ∫
dr 〈Vnm(r)〉Rm(ks(r))e

i/2
t′′−ts

(r−rs(p))2

≈ 〈Vnm(rs(p))〉Rm(ks(rs(p))) + i∇r 〈Vnm(rs(p))〉 · ∇kRm(ks(rs(p))) (3.33)

for the geometrical integrals, and

a(1)
nm(p, t0) = −ie−iEnt0eiIp,mts+

i
2

∫ ts
T

(p+A(τ))2dτ
∫ T

ts
dt′′ e+i(En−Em)t′′

×
( 〈
Vnm

(
rL(t′′)

)〉
Rm(p) + i∇r

〈
Vnm

(
rL(t′′)

)〉
· ∇pRm(p)

)
. (3.34)

for the final correlation-driven yield.
This expression, then, addresses the failures of the saddle-point approximation clearly

exhibited by the toy model, while still retaining the simplicity and numerical ease afforded
by the saddle-point method. Here we are spared the need for a full r integration at each
time step, and instead we require only a single evaluation of 〈Vnm(r)〉 and one of its
derivatives, ∇r 〈Vnm(r)〉. Moreover, depending on the method used to calculate 〈Vnm(r)〉,
the calculation of the gradient can be relatively cheap, when done numerically, and it can
even fall out essentially for free from the same quantum chemical calculations that yield
the potential.
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Chapter 4

Molecular electrostatic potentials in complex space

As we have seen in chapters 2 and 3, the R-matrix correlation-driven yield can be written
down as (3.34), which is essentially of the form

a(1)
nm(p, t0) = −ie−iEnt0eiIp,mts+

i
2

∫ ts
T

(p+A(τ))2dτ
∫ T

ts
e+i(En−Em)t′′ 〈Vnm(rL(t′′)

)〉
Rm(p)dt′′

(4.1)

if we ignore for the moment our hard-won corrections from chapter 3 (which are never-
theless of an equivalent form) as well as the Coulomb corrections of chapter 2. From this
expression we know essentially everything we need to get some hard numbers, except for
the correlation interaction potential

〈Vnm(r)〉 =
〈
n

∣∣∣∣∣∣
N−1∑
j=1

1− δnm
‖r− r̂j‖

∣∣∣∣∣∣m
〉
. (4.2)

The purpose of this chapter is to examine this potential as a function of r.
This is in principle rather straightforward, as it is only the expectation value of a

Coulomb kernel – a bread-and-butter component of quantum chemistry – but as we have
seen before, we need to query this potential at the laser-driven trajectory

rL(t) =
∫ t

ts
[p + A(τ)] dτ, (4.3)

and in general this is complex: the ionization time ts from (2.46) is complex, so the
integration variable τ must be complex, and this forces the analytical vector potential
A(τ) = −F

ω êz sin(ωτ) to also be complex. In chapter 5 we will explore the structure
of this complex-valued trajectory – how complex it can be, how that interacts with the
correlation interaction potential and the mean-field Coulomb potential, and to what extent
the imaginary parts of rL(t) can be kept to a minimum – but, for the moment, this chapter
simply accepts that 〈Vnm(r)〉 needs to be queried at complex-valued arguments, and studies
the consequences.

We will find that for several common models of the orbitals that generate 〈Vnm(r)〉,
including models general enough to generate the state of the art numerical calculations
for the orbitals, the corresponding analytical continuations for 〈Vnm(r)〉 can agree surpris-
ingly well (when r is ‘real enough’), but they can also differ catastrophically (when r is
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‘too imaginary’), or even be impossible to generalize into a correct analytical continuation.
The result is a serious constraint on the positions at which we can reliably calculate

〈Vnm(r)〉 (and indeed even know what behaviour to expect), and a strong argument can
be made that we completely lack the tools to venture further. On the other side, this
limit also increases our confidence in 〈Vnm(r)〉 in the regions where we can calculate it,
and, moreover, it gives us a clear goal to address in chapter 5, where we will show that it
is indeed possible to steer the complex trajectory rL(t′′) so that we never need to query
〈Vnm(rL(t′′))〉 at the positions where the numerical methods fail and the analytical models
disagree.

4.1 Quantum chemical calculations of correlation interac-
tion potentials for real positions

For a real argument r, the correlation interaction potential in (4.2) is actually rather
straightforward to calculate, since it is just the matrix element of a function of the rj
between two well-defined ionic eigenstates. As such, one can simply insert a position-
space resolution of the identity,

1 =
∫

dr1 · · · drN−1 |r1, . . . , rN−1〉 〈r1, . . . , rN−1| , (4.4)

to rephrase the potential as an (N − 1)-dimensional integral:

〈Vnm(r)〉 =
N−1∑
j=1

∫ 〈n|r1, . . . , rN−1〉〈r1, . . . , rN−1|m〉
‖r− rj‖

dr1 · · · drN−1. (4.5)

(For convenience, we forget the factor of δmn, which requires us to remember to impose
n 6= m on all uses of 〈Vnm(r)〉.)

In general, for real r, these are are well-behaved integrals. They have integrable square-
root singularities at rj = r, where the Coulomb kernel is multiplied by the transition charge
density 〈n|r1, . . . , rN−1〉〈r1, . . . , rN−1|m〉 (which is in principle complex-valued), and these
are in generally smooth and rather well-behaved, with support confined to rather small
regions around the molecule.

We can get a lot of intuition about the correlation interaction potentials of the form
(4.5) by working in the simplest Hartree-Fock regime, in which the ground state

|Ψg〉 = A |φ1〉 ⊗ · · · ⊗ |φN 〉 (4.6)

is a minimal Hartree-Fock determinant, a single antisymmetrized product of single-particle
orbitals |φj〉, and the ionic eigenstates can be approximated well by simply deleting the
relevant orbitals from the ground state. In this case the correlation interaction potential
simplifies to a one-particle integral of the form

〈Vnm(r)〉 =
N−1∑
j=1

∫
φ∗n(r′)φm(r′)
‖r− r′‖ dr′ (4.7)
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or, in terms of a transition charge ρmn(r′) = φ∗n(r′)φm(r′), as

〈Vnm(r)〉 =
∫
ρmn(r′)
‖r− r′‖

dr′. (4.8)

For rigorous calculations, one should of course use the fullest form available, but the
Hartree-Fock intuition is useful in predicting the overall behaviour of 〈Vnm(r)〉. For ex-
ample, this form justifies our use of a dipole model for the X → B transition in CO2 in
chapter 3.

Similarly, the full-form potential (4.5) can also be written down in the single-particle
integral form (4.8) by using the slightly more complicated transition charge density

ρmn(r′) = (N − 1)
∫

dr2 · · · drN−1
〈
n
∣∣r′, r2, . . . , rN−1

〉〈
r′, r2, . . . , rN−1

∣∣m〉 , (4.9)

which encapsulates the r-independent integration over all the other electrons.
Either way, the correlation interaction potential can always be written down in the

form (4.8), as a simple single three-dimensional integral of some transition charge ρmn(r′)
times a standard, perfectly integrable Coulomb kernel. As such, the correlation interaction
potential can be thought of as the electrostatic field that would be produced by a charge
density ρmn(r′), complex-valued as it might be.

In practice, unfortunately, obtaining exact analytical expressions for 〈Vnm(r)〉 for re-
alistic cases is impossible, starting with the fact that there are no molecules for which we
know exact analytical solutions for the electronic eigenstates. In fact, even for the simplest
known molecular system, the hydrogen molecular ion H+

2 , with only a single electron re-
sponding to two clamped nuclei, the single-dimensional Schrödinger equation is separable
but not exactly solvable. Similarly, as soon as there is more than one electron present
– starting with atomic helium – exact analytical solutions of the Schrödinger equation
simply do not exist.

The response to this over the past eight decades has been to develop numerical methods
to solve the Schrödinger equation to as good a precision as one can reasonably ask for, by
using some suitable discretization of the available state space and then numerically solving
a finite-dimensional eigenvalue problem, and this is the core of the discipline of quantum
chemistry.

Within this discipline, the prevailing methods to discretize the state space for the elec-
tron wavefunctions involve the postulation of some finite basis of single-electron functions,

B = {χ1, . . . , χM} , (4.10)

possibly optimized for the problem at hand in some variational way, and then working
with n-electron wavefunctions built as linear combinations of Slater determinants of those
basis functions. In general, these basis functions are mostly chosen to be so-called Slater-
type orbitals of the form e−r/α, depending exponentially on the distance r to some fixed
point in space, or even more commonly gaussian-type orbitals of the form e−r

2/σ2 , both
of which can be modified by polynomial factors to give them better angular momentum
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properties.
In the end, though, what matters for our purposes is that the transition charge density

ρmn(r′), when calculated through quantum chemical means, will typically be completely
constrained to be finite linear combinations of gaussian densities centred at some arbitrary
location in the molecule, possibly multiplied by some polynomial. This then allows us to
replace the arbitrary-looking ρmn(r′) by a fixed gaussian charge density

ρg(r′) = Ng exp
(
−r′2/σ2

)
(4.11)

if it is necessary to build intuition for the behaviour of the potential (4.8) when it is calcu-
lated via quantum chemical means, in the informal understanding that the full quantum
chemical transition charge density is a linear superposition of such densities or polynomi-
ally related ones, and therefore so will the potential, which depends linearly on ρmn(r′).

Here it is important to note that the gaussian potential (4.11) is not quite a perfect
model for a transition charge of the form (4.9), because transition charges must always
integrate to zero:∫

ρmn(r′) dr′ = (N − 1)
∫

dr′ dr2 · · · drN−1
〈
n
∣∣r′, r2, . . . , rN−1

〉〈
r′, r2, . . . , rN−1

∣∣m〉
= 〈n|m〉 = 0. (4.12)

In terms of simplified models, the gaussian potential (4.11) can easily be modified to
have this property, with the simplest and most physically relevant example being a p-
type gaussian of the form ρg,z(r′) = z′ρg(r′). The results in this chapter are essentially
unchanged with this modification (which is most easily seen by noting that ρg,z(r′) is
the derivative of ρg(r′) with respect to shifts in the origin), though the loss of rotational
symmetry makes the analysis more awkward.

Similarly, when quantum chemists use simple gaussians as a basis to represent a tran-
sition charge, the nature of the coefficients is always such that, although each term, as in
(4.11) or multiplied by a polynomial, will have a nonzero charge, all these charges must
add to zero.

4.2 Quantum chemical potentials for complex positions

Somewhat more practically, even for simple gaussian charge densities of the form (4.11),
it is often cheap enough to simply perform the integral (4.8) for 〈Vnm(r)〉 numerically,
since it is relatively well behaved (its integrable singularity aside) and can be computed
relatively quickly. For a quantum chemical transition charge density, known numerically
in terms of the eigenfunctions of a finite-dimensional problem, this certainly seems to be
a rather reasonable route, and for real positions it tends to work well.

What we want, of course, is to extend (4.8) to complex positions, but at least as a first
stab it is reasonable to simply put in a complex-valued r and churn away at the numerical
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integral. In this case, then the integral is of the form

〈
Vnm

(
Re(r) + i Im(r)

)〉
=
∫

ρmn(r′) dr′√
(Re(r) + i Im(r)− r′)2

=
∫

ρmn(r′) dr′√
(Re(r)− r′)2 − Im(r)2 + 2i Im(r) · (Re(r)− r′)

, (4.13)

which is not all that problematic, at least at first glance.
There is, for sure, the issue of exactly what branch to take for the square root, but

unless there are strong over-riding reasons this is settled by the fact that – absent knowl-
edge of r and the support through ρmn(r′) for the r′ that are relevant to the integral – the
argument of the square root is in general conjugate-symmetric with respect to inversion
in r′ (i.e. inverting r′ roughly conjugates the square root argument), and this generally
requests that the square root be taken in a conjugate-symmetric way. This requires, then,
that we define the square root with a branch cut on the ray (−∞, 0], so

√
ζ =

√
|ζ|eiθ = |ζ|1/2eiθ/2 (4.14)

whenever the argument ζ is written as ζ = |ζ|eiθ for −π < θ ≤ π. Throughout this work
we will adhere strictly to this convention for the symbol

√
unless otherwise noted.

In addition to this, the change from real to complex r does change the structure of the
integrand, by changing the nature of the singularity in the denominator. More concretely,
having a vanishing denominator now requires a pair of conditions,

(
Re(r)− r′

)2 = Im(r)2 and (4.15a)

(r′ − Re(r)) · Im(r) = 0, (4.15b)

and this changes the dimensionality of the singularity from a point to (in general) a non-
degenerate line. This singularity is now the intersection of a plane through the Re(r)
orthogonal to Im(r) and a sphere of radius ‖ Im(r)‖ around Re(r), and this means that
whenever Im(r) 6= 0 it is always a circle of radius ‖ Im(r)‖ centred at Re(r), on a plane
orthogonal to Im(r).

Here the added dimension does make the singularity less noble – there’s “more singu-
larity” to handle – but it is still perfectly manageable, since locally at the singularity it
looks mostly like a straight line, so it is of the form∫

local

dx′dy′dz′√
(x′ − x0)2 + (y′ − y0)2 (4.16)

(i.e. with the z dimension regularized out, but still a line singularity at x′ = x0, y′ = y0),
and this is still regular when the area element in the x′, y′ plane dx′dy′ = r′dr′dθ′ is taken
into account. Of course, if the integration is done numerically the ring singularity must
still be specifically handled to obtain correct results, but it does not represent a significant
impediment to the calculation.
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(a) Re(Vg(r)) (b) Im(Vg(r))

Figure 4.1: Electrostatic potential Vg(r) of a gaussian charge distribution as a function
of complex z for fixed x = 3 and y = 0, with σ = 1, calculated using direct numerical
integration as in (4.17).

With all this in hand, then, we can now simply plug in a complex position into (4.13),
do the integral numerically, and see what comes out. As a starting example, to keep things
simple, we can use a single gaussian charge distribution at the origin, ρg(r) as in (4.11),
so we look to calculate

Vg
(

Re(r) + i Im(r)
)

=
∫

Ng exp
(
−r′2/σ2) dr′√

(Re(r)− r′)2 − Im(r)2 + 2i Im(r) · (Re(r)− r′)
. (4.17)

This single integral can readily be integrated numerically, and we show the results in
Fig. 4.1, fixing two components of r and showing the variation of Re(Vg(r)) and Im(Vg(r))
as a function of complex z while keeping x and y constant. (Because of the rotational
symmetry of ρg(r), of course, these results are essentially representative, up to the shape
parameter

√
x2 + y2/σ.)

This procedure, then, gives us a very workable electrostatic potential: it is contin-
uous, with no poles, branch points, or other singularities, and it is bounded at infinity.
More physically, it contains two large bumps when z = iζ is imaginary and of the same
magnitude as |x| because then the quadratic term Re(r2) = x2 − ζ2 in

Vg(x, 0, iζ) =
∫

Ng exp
(
−r′2/σ2) dr′√

r′2 − 2(xx′ + iζz′) + (x2 − ζ2)
, (4.18)

which effectively acts as softening, vanishes, and this leaves the Coulomb kernel at maximal
amplitude. Moreover, the potential appears to be smooth and, if everything went right,
it should be analytic.

Unfortunately, this combination of features turns out to be too good for our electro-
static potential, because it makes it run afoul of one of the basic principles of complex
analysis: the fact that if a function is continuous and differentiable everywhere, then either
it diverges to infinity or it is absolutely constant.
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Mathematical Aside 4.1. Any bounded entire function is constant

To be more precise, a function f : C → C is called analytic at z if its complex
derivative f ′(z), in the sense of the Cauchy-Riemann equations, exists at z and
at all points in an open neighbourhood of z, and it is called entire if it is analytic
(and therefore continuous) at all points z ∈ C. Similarly, f is bounded in a region
D if there exists M > 0 such that |f(z)| < M for all z ∈ D. With this language,
then, we have the simple theorem:

Liouville’s Theorem. If f : C→ C is entire and bounded for all values of z in
the complex plane, then f(z) is constant.

For a rigorous proof, we refer the reader to Ref. 150. Nevertheless, given the
rather far-reaching consequences of this principle, it is worth spending some time
to justify it. In its essence, Liouville’s theorem is deeply related to yet another
core fact of complex analysis, the maximum principle:

Theorem (Maximum principle). If f : U ⊆ C→ C is analytic and not constant
in the interior of a region, then |f(z)| has no maximum value in that interior.

Both of these statements punch far above their weight in terms of the strength
of their consequences versus the simplicity of their statements, but the main
ingredient here is simply the fact that both the real and imaginary parts of f are
harmonic functions. Indeed, if we write f(x+ iy) = u(x, y) + v(x, y) in terms of
real-valued u, v, x and y, then the Cauchy-Riemann equations

∂u

∂x
= ∂v

∂y

∂u

∂y
= −∂v

∂x

(4.19a)

(4.19b)

imply that both u and v obey the Laplace equation,

∂2u

∂x2 + ∂2u

∂y2 = ∂2v

∂x2 + ∂2v

∂y2 = 0. (4.20)

Thus, if they are ‘winding down’, with convex curvature, in one dimension, they
must be ‘winding up’ with concave curvature in the orthogonal dimension. This
means that both u and v must obey the maximum principle – no harmonic func-
tion can sustain a local maximum in the interior of its domain – and, after some
technical wrangling with the Cauchy-Riemann equations to extend the argument
to |f(z)| =

√
u2 + v2, so does f .

At this level, we can already see that the numerical Vg(r) shown in 4.1 simply has
no chance of being an analytical function, since both its real and imaginary parts
are obviously not harmonic functions, and they both show obvious local maxima
and minima.
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Liouville’s theorem follows much of the same intuition – if a function is entire, then
it must keep growing for bigger and bigger circles – but it requires an independent
proof. More specifically, we take some arbitrary z0 ∈ C, and we relate the value of
the derivative f ′(z0) there to the values of f(z) on some arbitrary circle C about
z0 of radius r using Cauchy’s integral formula,

f ′(z0) = 1
2πi

∫
C

f(z)dz
(z − z0)2 . (4.21)

Since we know that |f(z)| is bounded everywhere by some constant M > 0, we
can take the absolute values of both sides to get an inequality

|f ′(z0)| ≤ 1
2π

M × 2πr
r2 = M

r
. (4.22)

Here M was given and fixed, but r can be chosen to be arbitrarily large, and this
requires that f ′(z0) = 0 for our arbitrary z0 ∈ C; in other words, f(z) is constant.

A bit away from the formal side, both of these principles express the fact that the
theory of analytical functions is very, very rigid, and even more so when compared
to the theory of smooth real functions in C∞. This rigidity boils down to the
fact that to be complex differentiable a function f must not only be locally well
approximated by a straight line, as in the real case; instead, it must also obey
the the full-fledged pair of Cauchy-Riemann differential equations in (4.19). The
rigidity of the theory is, at least partly, inherited from the theory of differential
equations, which is rigid enough that functions tend to inherit their values in the
interior of a region from their behaviour at its boundary.

On a more positive note, Liouville’s theorem is best seen as the statement that for
a function to be analytic, it needs to be interesting: it needs to have poles, branch
cuts, natural boundaries, or divergences at infinity. Our numerically integrated
Vg(r) from (4.17) and Fig. 4.1, with its gentle bumps and bounded, continuous
behaviour, does not qualify.

Returning to our numerically-integrated potential, we see that its features indicate that
it cannot be an analytical function of x, y and z. However, we do not need to take this
for granted – we can simply check to see whether it obeys the Cauchy-Riemann equations,
which is shown in Fig. 4.2. As expected from the above considerations, of course, the test
fails, which means that our numerically-integrated Vg(r) is not an analytical function.

The reason for why Vg(r) fails to be analytical can be seen, at least after the fact, from
its integral form (4.13). There, when we write

Vg(r) =
∫
Ng exp

(
−r′2/σ2)√

(r− r′)2
dr′, (4.23)
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(a) Im
(
∂Vg(r)
∂ Re(z)

)
(b) Im

(
∂Vg(r)
i ∂ Im(z)

)

(c) Re
(
∂Vg(r)
∂ Re(z)

)
≈ Re

(
∂Vg(r)
i ∂ Im(z)

)
(d)

∣∣∣ ∂Vg(r)
∂ Re(z) −

∂Vg(r)
i ∂ Im(z)

∣∣∣

Figure 4.2: Cauchy-Riemann equations for the numerically-integrated electrostatic poten-
tial Vg(r) of (4.17), shown over the same slice of complex coordinate space as Fig. 4.1
(x = 3, y = 0, and complex z). Panels (a) and (b) show the imaginary parts of the
derivative of Vg(r) with respect to the real and imaginary parts of z, respectively; for an
analytical function they should match but instead they have immediately appreciable dif-
ferences. The real parts, shown in (c), do match, but the two derivatives are left with a
strong difference, shown in (d).

we are expressing Vg(r) as a continuous superposition of Coulombic point-charge potentials
1/
√

(r− r′)2, and these are not analytic when r′ lies in the circular singularity, as described
by (4.15), with respect to r. Since the integral always includes points r′ at this singularity
and its neighbourhood, the assumption of analyticity of the resulting integral should be
seen as suspect from the start.

4.3 Exactly integrable potentials

We see, then, that the formulation of our correlation interaction potential 〈Vnm(r)〉 as
an integral over the ionic electrons’ positions must be reformulated from its foundations
when the probe point r is complex-valued. This is somewhat problematic, since we initially
defined 〈Vnm(r)〉 as the matrix element

〈Vnm(r)〉 =
〈
n

∣∣∣∣∣∣
N−1∑
j=1

1− δnm
‖r− r̂j‖

∣∣∣∣∣∣m
〉

(4.2)
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at the start of this chapter, and there are few ways of evaluating such matrix elements
that don’t rely on an integral.

However, a more careful analysis shows that the matrix element (4.2) is only needed
when defining 〈Vnm(r)〉 for real-valued positions, since that is what goes into the original
temporal integral for the ionization yield in (2.118) and (2.123), and the only thing we need
is the analytical continuation of this 〈Vnm(r)〉 – obtained by any reasonable means – when
we shift the endpoint of the temporal integral into the complex plane to arrive at (2.125).

This would seem to offer a very small comfort, since constructive theorems on analytical
continuation are few and far between, but fortunately for us our problem has plenty of
structure that we can exploit. To begin with, for many of the charge densities ρ(r) that we
care about, including gaussian and exponential charge densities, the electrostatic potential,
obtained as

V (r) =
∫

ρ(r′) dr′√
(r− r′)2

, (4.24)

can actually be integrated exactly in terms of a closed elementary expression – and, when
this is possible, the elementary expression gives an automatic analytical continuation. In
fact, it isn’t even necessary to do a full integration, since the integral electrostatic potential
in (4.24) can be described equally well, for real positions, as the unique solution of the
Poisson equation

∇2V (r) = −4πρ(r) (4.25)

under V (r) → 0 as |r| → ∞. In fact, for spherically symmetric charge distributions, this
reduces to a simple second-order ordinary differential equation, which is much easier to in-
tegrate, and additional angular-momentum polynomial factors can also be accommodated
rather easily by suitable modifications of the spherically-symmetric case.

This means, then, that for the gaussian charge distribution (4.11) that proved so
problematic earlier we can simply write down the potential as

Vg(r) = π3/2σ3Ng
erf(r/α)

r
(4.26a)

= Q
erf(r/α)

r
, (4.26b)

in terms of a simple error function [63, chap. 7] and the total charge Q. Similarly, with the
other building block of quantum chemical bases, the Slater-type orbital with an exponential
charge density

ρe(r) = Ne exp(−r/σ), (4.27)

the radial Poisson equation can also be trivially solved to give the potential

Ve(r) = 4πα2Ne

[
−
(

1 + 2α
r

)
e−r/α + 2α

r

]
(4.28a)

= Q

2α

[
−
(

1 + 2α
r

)
e−r/α + 2α

r

]
. (4.28b)

http://dlmf.nist.gov/7
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It is important to note that both of these exact potentials were obtained by integrating
Poisson’s equation (4.25) for real coordinates, and they are only equal to the integrally-
defined potential (4.24) when r is real. However, both exact formulas (4.26) and (4.28)
must hold for the analytical continuation of (4.24) into complex-valued r, because for each
coordinate they coincide on the real axis, and that is sufficient to ensure the uniqueness
of the analytical continuation. Since the both (4.26) and (4.28) are analytic, they are the
unique extension of (4.24) to the complex plane [150, §108].

Mathematical Aside 4.2. Analytical continuation

At this point, it is worth spending some time emphasizing this feature of the
theory of complex variables. If we are given a function f : R → C which is ‘nice
enough’, it is usual to speak of its analytical continuation as if this extension of
f to the complex plane can always be done, and can always be done uniquely.
The possibility and uniqueness of analytical continuation in a multiply connected
region is a complicated question, which reaches fruition in the theory of Riemann
surfaces. (On the other hand, it is all too common to assume that, multivaluedness
issues aside, any analytical function can always be extended as far as necessary,
which need not be the case: many functions run into natural boundaries, which
stop any kind of analytical continuation [151, p. 191].)

In our context, it is worth emphasizing just how little is really necessary to ensure
the uniqueness of an analytical continuation; the standard result [given e.g. in
Ref. 150, pp. 283ff] is usually stated in the form

Theorem. A function that is analytic in a domain D is uniquely determined over
D by its values over a subdomain, or along an arc, interior to D.

where the key word is the concept of a domain, which is restricted to an open,
singly connected subset D of C. However, the hypotheses for this usual state-
ment can be softened considerably [151, p. 95]: the agreement over a line can be
loosened to agreement over a sequence (sn)∞n=0 ⊂ D that converges to a point
sn → s ∈ D, or, in other words,

Theorem. A function that is analytic in a domain D is uniquely determined over
D by its values on any set S ⊂ D which has an accumulation point in D.

This is, again, an expression of the rigidity of the theory of analytical functions,
especially when compared to the study of continuously differentiable real func-
tions, where no similar result is even remotely true. Complex analytical functions,
being the solutions of a differential equation, are much more constrained by their
values on the boundary or subparts of a domain.

Now that we have suitable analytical continuations of at least some reasonable charge
distributions, the next thing to investigate is their behaviour as functions of r. The first



100 Electron dynamics in complex space and complex time

thing to try is to look at their behaviour over real coordinates, and here both potentials
look remarkably similar (modulo some leeway on how to relate the 1/e widths σ and α of
the two charge distributions), as shown in Fig. 4.3.

Figure 4.3: Exact electrostatic potentials Vg(r) (blue) and Ve(r) (red) as a function of real
coordinates, for equal total charges Q = 1 and with the 1/e widths σ = 1 and α =

√
π/4

chosen so the potentials will match at the origin. The corresponding charge distributions
are shown in (b).

In general, gaussian distributions are rather different to Slater-type exponential or-
bitals, because they lack the latter’s cusp at the origin, and they have markedly thinner
tails at the edges. Nevertheless, if we relate the two widths by asking that the potential
at the origin V (0) be the same for both distributions, we get relatively similar charge
distributions, as shown in Fig. 4.3(b), and the remarkably similar electrostatic potentials
of Fig. 4.3(a). Since the charge distributions are relatively similar blobs for both cases, we
can hope that their potentials will also have similar behaviour for complex coordinates.

Unfortunately, the similarities between the two potentials end there, and when we look
at their behaviour for complex coordinates we get completely different structure, shown
in Fig. 4.4.

Perhaps the most salient feature of both of these potentials is the stark divergence of
the exact gaussian potential Vg(r) as the imaginary part of z increases, which immediately
becomes unmanageable regardless of the scale on the vertical axis. This can be seen quite
clearly from the asymptotic expansion for the error function [63, Eq. (7.12.1)], which at
large and real argument describes a gaussian approach from below to 1, but inherits this
e−z

2 behaviour for the entire complex plane:

erf(z) ∼ 1− e−z
2

√
π

(
1− 1

z
+ 1

2z2 − · · ·
)

(4.29)

whenever | arg(z)| < 3π
4 . In the potential Vg(r) from (4.26), the error function is called

with r =
√
x2 + y2 + z2 as an argument, which means that for large |z| it behaves as

http://dlmf.nist.gov/7.12.1
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(a) Re(Vg(r)) (b) Im(Vg(r))

(c) Re(Ve(r)) (d) Im(Ve(r))

Figure 4.4: Exact electrostatic potentials Vg(r) and Ve(r) over complex coordinates, with
the same cut over complex space as Figs. 4.1 and 4.2. The potential Vg(r) from a gaussian
charge distribution diverges at imaginary coordinates, while the potential Ve(r) from an
exponential distribution has a branch cut there.

exp
(
(Im(z)2 − Re(z)2)/σ2), and if the imaginary part of z is large enough then Vg(r) will

diverge in a super-gaussian fashion. This strong divergence is then responsible for the
wall-like behaviour shown in Figs. 4.4(a) and 4.4(b). Finally, to add a slight insult to the
injury, the complex exponential also oscillates ever more wildly in this region.

The potential for the exponential distribution, Ve(r), on the other hand, has much
more bounded behaviour, but instead of a divergence to infinity it now fills up its in-
terestingness quota with a pair of branch cuts that stretch from z = ±ix to imaginary
infinity. These branch cuts are, in fact, rather natural, because the potential is a func-
tion of r =

√
x2 + y2 + z2, which itself has a sign-change branch cut when its argument

is negative.
It is worth asking at this stage why the gaussian potential Vg(r) does not exhibit any

branch cuts on its domain: after all, it is a function of r just as much as Ve(r). The reason
for this is that the error function is a pure odd function, and it therefore has a Taylor
expansion [63, Eq. (7.6.1)] of the form

erf(z) = 2√
π

(
z − z3

3 + z5

10 − · · ·
)
. (4.30)

This means, in turn, that the gaussian potential (4.26) also has a Taylor series of definite

http://dlmf.nist.gov/7.6.1
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parity,

Vg(r) = Q
erf(r/σ)

r
= 2Q√

πσ

(
1− r2

3σ2 + r4

10σ4 − · · ·
)
, (4.31)

except that now Vg(r) is a pure even function, so it is a function of r2. Since r2 has
no branch cuts, Vg(r) cannot have any either. It is this sort of subtle difference in the
potentials’ behaviour for real coordinates that causes the stark differences at complex
coordinates shown in Fig. 4.4.

The divergence in behaviour of our two potentials at complex coordinates is defi-
nitely worrisome, since they are both more or less reasonable models for real-world charge
distributions. Gaussian and exponential-type orbitals are the general building blocks of
quantum chemistry, and while they are certainly not interchangeable (with a definite con-
ceptual advantage to exponential charges, since the gaussian distributions lack the cusps
and long tails expected of real-world orbitals), as far as real-coordinates electrostatics is
concerned they are both essentially blobs of charge that produce very similar electrostatic
potentials.

It is also important to note that this difference in behaviour is quite certain to persist
through most of the common modifications to our model charge distributions. On the
simplest level, the addition of polynomial factors to a gaussian charge is exactly equivalent
to taking its derivatives, which means that the overall (super-)gaussian factor will always
be present. A similar, more involved argument holds for exponential orbitals.

On a slightly higher level, it is also impossible to get radically different behaviour from
any finite collection of gaussians, since the linearity of Poisson’s equation implies that
the potential will be the corresponding linear combination of Vg(r)’s, and it is essentially
impossible for such a function to be well-behaved everywhere, since it is an entire function
and we know it decays as 1/r or faster in all real directions, so it needs to diverge to
infinity at large imaginary coordinates.

Moreover, the behaviour at large imaginary coordinates will be dominated by the
contributions from the tightest gaussians in the basis set, because these will have the
shortest length scales σ, and that means that their corresponding potentials Vg(r) ∼
exp

(
+ Im(r)2/σ2) will be the fastest to explode. While there will probably be at least two

of these at the same width, they are overwhelmingly unlikely to contribute in such a way
that their divergences will cancel out, especially when probed over all possible lines on
real space and all possible directions in the complex continuation of that real cut. This
argument, moreover, extends to transition charges that integrate to zero total charge.

Given that Vg(r) and Ve(r) produce wildly different potentials for complex coordinates,
we are now left with the even bigger question of what should be the general features to
expect of the complex-coordinates electrostatic potential V (r) for a realistic charge distri-
bution – should it have branch cuts? should it diverge exponentially? super-exponentially?
should it have poles, while we’re at this? – and we are left with precious few tools to answer
this question.

The one saving grace of this problem is that the differences in behaviour are confined
to very identifiable regions in complex r space. The complex-coordinates electrostatic
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(a) Re(Vg(r)) (b) Im(Vg(r))

(c) Re(Ve(r)) (d) Im(Ve(r))

(e) Re(V num
g (r)) (f) Im(V num

g (r))

Figure 4.5: Exact electrostatic potentials Vg(r) and Ve(r) over complex coordinates (a-d),
exactly as in Fig. 4.4, but restricted to the region Re(r2) > 0. Despite their disagreements
in coordinates that are ‘too imaginary’ (in the sense that Re(r2) = Re(r)2 − Im(r)2 < 0),
both potentials agree quite well here. (We show their close quantitative agreement in
Fig. 4.6.) In addition, they also agree relatively well (particularly when away from the
boundary) with the numerically-integrated V num

g (r) of Section 4.2, shown in (e) and (f);
this means that V num

g (r) is also a relatively reasonable model in that region, though its
much higher computational cost and worse analyticity properties render it a bad choice.
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potentials shown in Fig. 4.4 look very different, but this masks somewhat the fact that, if
you ignore the regions where Vg(r) behaves wildly, then the two potentials actually agree
rather closely, both qualitatively and quantitatively. The regions where this happens are
easily pointed out through the asymptotic expansion (4.29) for erf(r/σ), which makes it
clear that, as long as

Re(r2) > 0, (4.32)

then the exponential term is decaying and Vg(r) should be well-behaved. As we shall see,
the restriction (4.32) will be a driving consideration hereafter.

In the meantime, we can begin by looking at the potentials we have so far when
restricted to this region, and these are shown in Fig. 4.5. Once the region with the
Vg(r) divergence, and the Ve(r) branch cut, is removed, both potentials have essentially
the same shape, and indeed even quantitatively match to a remarkable degree, as shown
in Fig. 4.6. Even more notably, both exact potentials also show a good match to the
numerically-integrated Vg(r) in this region.

(a) |Ve(r)− Vg(r)|/|Vg(r)| (b) |V num
g (r)− Vg(r)|/|Vg(r)

Figure 4.6: Normalized differences between the exponential-charge potential Vg(r) and the
exact gaussian potential Vg(r) as a reference (a), and the numerically-integrated potential
V num

g (r) of section 4.2, against Vg(r) (b), on a logarithmic scale. The plots use the same
cut over complex space as Figs. 4.1, 4.2, 4.4 and 4.5 and are (roughly) restricted the allowed
region Re(r2) > 0 of (4.32). The agreement here is not only qualitatively good, as shown
in Fig. 4.5, but also quantitatively rather close, with the potentials agreeing to better than
1% over large regions. On the other hand, once the mostly-imaginary region Re(r2) < 0 is
reached, the disagreement rises very steeply.

On the other hand, the close match between the potentials in the region Re(r2) > 0
is also a cause for concern, because it carries no warning of the wild disagreements that
sprout between them with alarming speed upon leaving this region. If one is using some
local method to extend the domain of the electrostatic potential, for example, how is one to
detect and handle a sudden, catastrophic blow-up in the potential? It bears emphasizing
that the remarkably similar surfaces shown in Fig. 4.6 are solutions of the same rigid
differential equation discussed in the Mathematical Aside 4.2 – a differential equation
which enforces the uniqueness of its solutions over their entire domains when given (exact)
agreement even at a single accumulation point – and yet these solutions can still depart
from each other, suddenly and steeply, as in Fig. 4.4.

Given all of this, can we say that both Vg(r) and Ve(r) have the “right” shapes in the
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region where Re(r2) > 0, if their minute differences can lead to wildly different behaviour
at a moment’s notice? If it is possible to talk about a “correct” shape, which one is it? If
both can be right depending on circumstances, which one should we use to set expectations
for the physical charge density in a real-world molecule?

4.4 Outlook

In the end, unfortunately, none of these questions have any easy answers. Simply put,
the theory of analytical functions is just too rigid, and depends too delicately on the
initial boundary values, to say anything of consequence about the global behaviour of a
general electrostatic potential V (r) over the entirety of complex r space, and the overall
recommendation is to stay, whenever possible, in the ‘safe’ region

Re(r2) > 0, (4.32)

where the different approaches agree.
One might also ask, at this point, for what evidence we have that the problem is even

solvable: to what extent do we know that there even exists an analytical continuation for
the electrostatic potential V (r) of a generic real-world (transition) charge density ρ(r)?
Here (regardless of whether this is fortunate or unfortunate) the answer is positive: in
general, this analytical continuation does exist, at least for some open set about the
real slice of complex r space.

The reason for this is that the electrostatic potential V (r) is a solution of the Poisson
equation (4.25), and it therefore gets many of its properties from the robust structure
of the Laplacian operator; more specifically, the Laplacian is required to have analytic
solutions whenever the right-hand side is analytic. Similarly, this right-hand-side function
ρ(r) is obtained from the eigenfunctions of the time-independent Schrödinger equation on
multiple dimensions,∗ and again the Schrödinger multi-electron Hamiltonian is generally
regular enough that its eigenfunctions are analytic.

Mathematical Aside 4.3. Analytic regularity of elliptic operators

As a final building block of the mathematics that underpins this chapter, it is
also worth detailing the results that guarantee the existence of the analytical
continuations of the electrostatic potentials V (r) that we need. The main such
result is the Elliptic Regularity Theorem, which governs the regularity of solutions
of elliptic partial differential equations; it can be phrased in a number of ways
but a suitably strong one is provided by L. Hörmander in Ref. 152, p. 178, as the
following theorem:

∗This does entail a nontrivial step in showing that an analytical solution of the Schrödinger equation give
an analytical charge density, since expressions of the form φm(r)∗φn(r) include a complex conjugation
that can destroy the analyticity if not done correctly. Fortunately, this can be done easily by extending
functions of the form φm(r)∗ to the complex plane as φm(r∗)∗, which is analytic by the Schwarz reflection
principle [151, p. 119-120].
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Theorem. Let P (x,D) be an elliptic differential operator in D with coefficients
that are analytic in D. If u ∈ D ′(Ω) and

P (x,D)u = f (4.33)

where f is also analytic in Ω, then u is analytic in Ω.

Here D ′(Ω) denotes the set of all distributions over Ω (formally defined as a set
of suitably bounded linear functionals u : C∞0 (Ω)→ C), but the requirement that
f and u be analytical turns them into regular functions over Ω and fulfils the
boundedness condition on the distribution.

In particular, both the Schrödinger and the Poisson equations are of this form
(once one excludes the Coulomb singularities), since they are both elliptic and
have analytical coefficients and right-hand sides, so both are required to have
analytical solutions.

We have, then, the promise from an existence theorem that, given an idealized real-
world (transition) charge density ρ(r), there should be a Platonic ‘true’ analytical con-
tinuation of the relevant electrostatic potential V (r): the multi-electron Hamiltonian has
analytical true eigenfunctions, which combine into an analytical charge density, and this
then gives an analytical electrostatic potential. However, we have no way to find this ‘true’
potential (which is relatively reasonable, as we cannot even find the true eigenfunctions) or
even have any idea of what it should behave like, let alone find reasonable approximations
for it (and this does break the usual paradigms).

One could think, for example, that to find an analytical continuation it would hopefully
be good enough to find chemical data for the charge density and the electrostatic potential
for real coordinates which was accurate enough, and then if necessary perform a numerical
solution of the Cauchy-Riemann equations for these data. Unfortunately, such an effort is
doomed to fail: the numerical solution of the Cauchy-Riemann problem is likely to prove
a stiff, unstable problem, because – as demonstrated in Figs. 4.5 and 4.4 – very similar
initial conditions can lead to very sudden, unexpected divergences, even for exactly-known
potentials.

Moreover, even if we could somehow perform this numerical solution of the Cauchy-
Riemann equations to arbitrary accuracy over the entire complex plane, we would still
be left with the wrong solution. This is because the quantum chemical data, in the end,
produces a charge density ρ(r) which is ultimately a sum of gaussian-type distributions.
To be sure, these will come in many places and sizes, to approximate to high accuracy
the long tails and the sharp cusps of the expected real-world distribution, but in the end
it will still be a finite superposition of gaussians, and the exact solution will still be the
corresponding finite superposition of Vg(r)s.

Thus, it is conceivable that we could succeed in numerically solving the Cauchy-
Riemann problem to accuracy close enough to the exact solution – but we already know
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what this exact solution looks like: it is the relevant superposition of gaussian potentials
Vg(r) from (4.26), and we know that these potentials diverge when Re(r2) < 0 as shown
in Fig. 4.4, and that they do not match the exponential model which is more physically
reasonable.

Similarly, one might hope that for a real molecule these divergences would cancel
out in some way, but as we have seen, this is very unlikely. Instead, large Im(r) any
superposition-of-Vg(r)s potential will be dominated by the contribution from the smallest
gaussians, which are typically used to approximate the cusps at the nuclei, since these will
have the shortest length scales σ, and therefore their corresponding potentials Vg(r) ∼
exp

(
+ Im(r)2/σ2) will be the fastest to explode.
Even worse, the close match between Ve(r) and Vg(r) in the allowed region bodes ill

for any finitary approach to the potential through the charge distribution. To see this,
suppose that we are given a guarantee of a uniform approximation to the Platonic charge
density ρ(r), represented as a finite sum of manageable charge densities ρi(r). This is
a rather reasonable thing to assume, and it is attained, for example, when solving for
ρ(r) through Slater-type quantum chemical methods, which offer guarantees of the form
|ρ(r)−∑i ρi(r)| < ε, where ε is a numerical precision that can be set arbitrarily small
(with a corresponding increase in the size and complexity of ∑i ρi(r)), and moreover the
approximation is guaranteed for all positions r. Even a situation this ideal, however, fails
to exclude the possibility that the Platonic charge density be equal to ρ(r) = ∑

i ρi(r) +
ε′ρg(r): the manageable numerical∑i ρi(r), with a small gaussian addendum ε′ρg(r) which
is bounded below ε for all real positions, but which will still quickly dominate the potential
at imaginary positions that are large enough.

This therefore means that, although exponential charge densities are probably the
most physically correct models for the Platonic charge distribution – the one obtained
mathematically from the regularity of the Schrödinger equation –, there is still uncertainty
as to how well they extend to the complex plane.

More mathematically, this means that while analytical continuation is possible and
exact when we know the exact function we want to continue analytically, the use of finitely
accurate data on a limited number of sample points to attempt an analytical continuation
to the whole of the complex plane is, in the absence of very strict guarantees on the
function we’re approximating, bound to fail at least some of the time.

We see, then, that roughly half of complex r space is closed to the means of inquiry
we have available to us, and we need to stay in the allowed region if we want to have
meaningful electrostatic potentials from our transition charges.

However, in contrast with the bleak landscape presented above, the assumption of
an exponential charge is in fact fairly reasonable, and the remarkably close agreement
between the potentials as displayed in Fig. 4.5 is a very encouraging sign that, within
the allowed region, it is actually quite reasonable to assume that we’ve got the correct
potential, even if we’re using gaussian-based quantum chemical charge distributions.

Moreover, we also have a very clean criterion – whether Re(r2) > 0 or not – to tell
whether we are in the allowed region, and we can use this information to help shape the
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complex-space trajectory rL(t) that we will actually use to probe the potential. In addition
to this clear bound, in the next chapter we will show that it is in fact possible to choose
the integration path in the complex time plane in a way that keeps the position-space
trajectory completely within the allowed region, and that therefore the problematic cases
never arise.

In other words, the semiclassical quantum mechanics of complex-valued trajectories
need to be handled carefully, and we have seen the serious breakdowns that can occur
when one pushes too far, but we can also be fairly confident that within the bounds that
we have described the behaviour will be manageable, and we will show in chapter 5 how
to ensure that the trajectory remains within those bounds.

Finally, and as an added bonus, we also get that as long as we stay in the allowed
region, we can safely use the exact potentials Vg(r) for each of the gaussian building
blocks of any quantum chemical charge distributions, and this spares us the need of any
numerical integration (which was ultimately doomed to produce non-analytical results
in the first place), which therefore considerably speeds up the calculations of the ARM
correlation-driven ionization yield, since we now require only a few queries of the Vg(r)
per temporal integration point, instead of iterating over a full numerical integration.



Chapter 5

Quantum orbits as trajectories through complex time and
complex space

This chapter examines in closer detail the structure of the complex-valued electron trajec-
tories used by the Analytical R-Matrix theory of photoionization: where it comes from,
what the complex-valuedness means, how it interacts with the correlation interaction and
the mean-field Coulomb potentials, under what circumstances the imaginary part becomes
problematic, and how it should be handled in those conditions.

We have built, in chapter 2, the framework for a semiclassical, trajectory-based theory
of photoionization including the Coulomb and correlation interaction potential, building
from the Schrödinger equation to obtain the laser-driven trajectory

rL(t) =
∫ t

ts
[p + A(τ)] dτ (5.1)

as a fundamental object, and we have examined the correlation interaction potentials that
should be evaluated at this trajectory – the reduction of the geometrical integrals to single
evaluations of the potential in chapter 3 and the properties of realistic and model molecular
correlation interaction potentials when taken over complex coordinates in chapter 4. Now
we turn to the detailed properties of the laser-driven trajectory (5.1).

The material in this chapter has appeared previously in reference

4. E. Pisanty and M. Ivanov. Slalom in complex time: emergence of low-energy
structures in tunnel ionization via complex time contours. Phys. Rev. A 93 no. 4,
p. 043 408 (2016). arXiv:1507.00011.

This chapter also describes work that is implemented in the software packages

9. E. Pisanty. ARMSupport: A support suite for Analytical R-Matrix calculations.
https://github.com/episanty/ARMSupport, v1.0.15 (2016).

11. E. Pisanty. QuODD: Quantum Orbits Dynamic Dashboard. https://github.

com/episanty/QuODD, v1.0 (2015).

109

http://dx.doi.org/10.1103/PhysRevA.93.043408
http://dx.doi.org/10.1103/PhysRevA.93.043408
http://arxiv.org/abs/1507.00011
https://github.com/episanty/ARMSupport
https://doi.org/10.5281/zenodo.164629
https://github.com/episanty/QuODD
https://github.com/episanty/QuODD
https://doi.org/10.5281/zenodo.164633


110 Electron dynamics in complex space and complex time

5.1 Emergence of complex-valued trajectories in Analytical
R-Matrix theory

Before we go into the detailed structure of the laser-driven trajectory (5.1), it is important
to reconstruct where exactly it comes from, and why the Analytical R-Matrix (ARM)
theory uses this specific form as opposed to other alternatives. As we saw in the In-
troduction, the traditional Strong-Field Approximation (SFA) methods tend to produce
ionization yields of the form

a(p) ∼ exp
(
−i
(
−Ipts + 1

2

∫ T

ts
(p + A(τ))2 dτ

))
, (5.2)

where ts is a saddle point time obeying an equation of the form 1
2(p + A(ts))2 + Ip = 0,

and this admits a natural trajectory interpretation because the Volkov phase,

exp(−iSV ) = exp
(
− i2

∫ T

ts
(p + A(τ))2 dτ

)
= exp

(
−i
∫ T

ts

v(τ)2

2 dτ
)
, (5.3)

is exactly the semiclassical kinetic phase of a particle with velocity v(t) = p+A(t), exactly
that of a free electron driven by the laser field.

The problem with that is the word ‘free’: the Strong-Field Approximation neglects
effects caused by the Coulomb field, which causes it to miss several important physical
effects and features of real-world spectra, so the problem to be solved is the reintroduc-
tion of Coulomb effects within this formalism, looking for a trajectory-based semiclassical
theory that includes the effects of this potential.

As we saw in the Introduction, a class of methods known generally as the Coulomb-
corrected Strong Field Approximation (CCSFA) [57, 58] accomplishes this by keeping the
form of the result – a(p) ∼ e−iS – and replacing the action by the full Coulomb action
(kinetic terms as well as the Coulomb potential energy) evaluated at a full trajectory
that obeys a Newtonian equation of motion driven by the laser field and the Coulomb
potential. Unfortunately, however, getting the trajectory from the equation of motion is
problematic, because the trajectory formulation derived from (5.3) says nothing about the
initial condition to be used, and this needs to be supplied by hand.

The ARM theory, on the other hand, gets its results directly from the boundary match-
ing procedure of chapter 2, and this means that it gets its trajectory (5.1), initial conditions
and all, in a traceable line from the Schrödinger equation. This has the direct advantage
that the trajectory no longer includes any arbitrary elements, but for this we must pay the
price that the theory only uses the laser-driven trajectory instead of the full (laser plus
Coulomb) Newtonian equation of motion.

In fact, as we shall see later, our study of the structure of (5.1) shows that the ideal
theory, one that builds from first principles through to the full trajectory, will likely face a
number of difficulties that disappear when one has control over the initial condition, but
which come naturally to the first-principles tunnelling theory. At the moment, though,
the situation is roughly the one sketched in Fig. 5.1: the ideal theory, as yet unavailable
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and possibly outside the realm of the reasonably obtainable, should incorporate the first-
principles aspects of ARM theory and the full trajectory used by CCSFA methods, but at
the moment all we have are those two dual approaches to help us understand what features
the ideal theory should have, what problems it will probably meet, and what tools are
available to resolve those.

full action
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SFA CCSFA
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Figure 5.1: Schematic depiction of the relationship between the Strong-Field Approxima-
tion (SFA), the Coulomb-corrected Strong-Field Approximation (CCSFA), and the An-
alytical R-Matrix (ARM) theory presented here. Ideally, we would like a first-principles
derivation of a semiclassical theory building on the SFA and including Coulomb effects with
the full Coulomb action: ARM theory approaches on the first-principles side and CCSFA
uses a full Coulomb action, and both illuminate important aspects of the ideal theory.

For now, though, we focus on the task at hand and examine the origin of the ARM
trajectory (5.1). The ARM gets its trajectory language, ultimately, from the same place
that the usual SFA does: from its continuum wavefunctions. However, while the SFA
takes its kinetic phase from the Volkov states〈

r
∣∣∣k(V)(t)

〉
= 1

(2π)3/2 e
i(k+A(t))·re−

i
2

∫ t
T

(k+A(τ))2dτ , (2.17)

in ARM theory we introduce the Coulomb correction at this same wavefunction level
where the trajectory language starts. Thus, ARM theory introduces the Coulomb phase
e−iWC = e−i

∫ t
T
V (rLdτ here, giving〈

r
∣∣∣k(EVA)(t)

〉
= 1

(2π)3/2 e
i(k+A(t))·re−

i
2

∫ t
T

(k+A(τ))2dτe−i
∫ t
T
V (rL(τ ;r,k,t),τ)dτ , (2.18)

in terms of laser-driven trajectory

rL(τ ; r,k, t) := r +
∫ τ

t

(
k + A(τ ′)

)
dτ ′. (2.19)

Holy Grail image in Fig. 5.1 excerpted from Monty Python and the Holy Grail, © National Film Trustee
Company Ltd, 1974.
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Moreover, the form of this Coulomb phase e−iWC , and the trajectory it builds from, are
not imposed on the wavefunction. Instead, the eikonal approximation [69, 70] builds this
phase from a WKB-like semiclassical series, which transforms the Schrödinger equation
for e−iS into a Hamilton-Jacobi equation in S, whose solutions are precisely those built
over the classical trajectories.

Implementing the eikonal-Volkov wavefunctions, on the other hand, does require addi-
tional machinery, because their perturbative treatment of the Coulomb field means that
they cannot get too close to the ion and its Coulomb singularity. While this is not the only
reason to introduce the R-matrix splitting of space into inner and outer regions (which is
also essential for multi-electron effects), it does make the two methods ideally suited for
each other.

This means, then, that the eikonal Volkov states need to be matched at the R-matrix
boundary using the procedure of chapter 2, and this connects them to a similar wave-
function on the other side – the WKB tail of the ionizing orbital, which is also essentially
of the form

ψg(r) ∝ Cκe
−i
∫ tr
tκ
U

(∫ τ
ts

v(τ ′)dτ ′
)

dτ
. (5.4)

Here the ‘starting’ time tκ has some leeway, as changing tκ only changes ψg by a constant
that can be absorbed into tκ, but the convenient choice is to set it to tκ = ts− i/κ2, which
permits the WKB ground state (5.4) to coincide with the explicit expression (2.79) for the
wavefunction. In trajectory language, this choice implies that the position at tκ is roughly
1/κ, the characteristic distance of the ionizing orbital. (This separation, while small, is
nevertheless crucial, because for a Coulomb singularity the integral in (5.4) diverges if
taken for a trajectory that starts at the origin with τ up to ts.)

The trajectory formulation for the ionizing state’s WKB expression (5.4) is the ultimate
source of the initial condition for our final laser-driven trajectory (5.1), since the eikonal-
Volkov states (2.18) are based on trajectories (2.19), which have an arbitrary starting
point set to the evaluation point r; these starting points are averaged over the R-matrix
boundary in the matching procedure and reduce to the WKB expression with a trajectory
that starts at the origin at the ionization time ts.

5.2 Imaginary parts of the laser-driven trajectory

Having examined the pedigree of our laser-driven trajectory,

rL(t) =
∫ t

ts
[p + A(τ)] dτ, (5.1)

we now turn to its structure. We focus specifically on a monochromatic field of the form

A(t) = −F
ω

n̂ sin(ωt), (2.48)

though most of the results that follow will degrade smoothly if a reasonably slow envelope
is introduced. In this chapter we will work in the laboratory frame, fixing the polarization
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direction to the z axis.
Generally speaking, the laser-driven trajectory should be thought of as a general ana-

lytical function rL : C→ C3, and in principle it is defined for an arbitrary complex input,
for which it reads

rL(t) = (t− ts)p + F

ω2 ẑ (cos(ωt)− cos(ωts)) , (5.5)

with the cosine taking an arbitrary complex input as usual.
More specifically, though, we care about rL(t) because we need it to calculate the

temporal integrals over the mean-field Coulomb potential as
∫ T

tκ
Un(rL(τ))dτ (5.6)

for the single-electron yield (2.72), and
∫ T

ts
〈Vnm(rL(t))〉 e+i(En−Em)t dt (5.7)

over the correlation interaction potential for the correlation-driven yield (3.34). Both of
these integrals start at (or near) the complex ionization time ts, and they need to be taken
until the detection time T , which should be large enough for the pulse to be over and for
all ionization effects to have converged.

Since the integrands in both cases are analytical, the path for these integrals can in
principle be chosen arbitrarily, and the integral will always evaluate to the same value.
However, for the sake of definiteness, as we saw in the Introduction with Fig. 1.2, the
convention is generally to start at the complex ionization time ts = t0 + iτT, integrate
directly down to its real part t0 = Re(ts) on the real axis, and then along the real axis
until the detection time T , as shown in Fig. 5.2.

Figure 5.2: Standard time contour used in complex-time theories of tunnelling ionization:
down from the complex ionization time ts to its real part t0 = Re(ts), and then along the
real axis until the detection time T .

This sort of contour is particularly useful conceptually, because it allows us to usefully
separate a “tunnelling” part of the integration (the downward leg, where factors of the form
e−iEt for complex t impose the exponential unlikelihood of tunnelling processes) from a
more classical propagation along the real axis where e−iEt factors are only phases as usual
and the electron is generally understood as having left the classically forbidden region.
As we shall see later, this standard contour can cause problems when we turn time into
position using our laser-driven trajectory (5.1) and we run this through our potentials,
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but it is useful in many scenarios and it is certainly a reasonable default choice.
If we analyse this standard contour in terms of the trajectory rL(t), the most interesting

part is the tunnelling segment – the downwards leg from ts to t0. Here, breaking the
trajectory (5.5) down into explicit real and imaginary parts for an argument of the form
t = t0 + iτ , we can express it as

rL(t0 + iτ) =− i(τT − τ)p⊥

+ F

ω2 ẑ
[
− cos(ωt0)

(
cosh(ωτT)− cosh(ωτ)

)
+ i

(
−ω(τT − τ)ωpz

F
+ sin(ωt0)(sinh(ωτT)− sinh(ωτ))

)]
. (5.8)

Here we see that the combination cos(ωt) = cos(ωt0 + iωτ) will generally always produce
a complex number whenever t0, which is given by the explicit saddle-point equation

ωts = ωt0 + iωτT = arcsin
(
ω

F

(
pz + i

√
κ2
n + p⊥2

))
, (2.52)

has a nonzero real part, which happens whenever pz is nonzero. Outside of the special case
of pz = 0, then, the laser-driven trajectory rL(t) is always complex-valued once t reaches
the foot of the contour at the real axis, following the behaviour shown in Fig. 5.3.
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Figure 5.3: The laser-driven trajectory rL(t) on the complex z plane, corresponding to
the “tunnelling” part of the standard contour where t goes from the complex tunnelling
time ts down to its real part t0 on the real axis, with the time contour segments shown in
the inset. Here, and in the rest of this chapter unless otherwise stated, we set F = 0.05 a.u.,
ω = 0.0456 a.u. and κ = 1.07 a.u., corresponding to argon ionized by a 1 µm field at
1014 W/cm2, with Keldysh parameter γ = 0.98.

In addition to this, if there is any nonzero transverse momentum p⊥ orthogonal to
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the polarization direction, then upon reaching the real axis the position on the transverse
plane will be completely imaginary, at −iτTp⊥, since here the electron has a real velocity
and propagates through an imaginary time interval.

In the longitudinal direction, on the other hand, in the special case that pz = 0 the
electron has a completely imaginary velocity vz(ts) =

√
−2Ip, and it propagates over an

imaginary time interval, so it accrues only real-valued changes in position, as it does in
the quasi-static case described in the Introduction. For nonzero pz, on the other hand,
the velocity is only completely imaginary at the moment of tunnelling, but it acquires a
nonzero real component as the electron crosses the classically forbidden region, and this
results in a nonzero imaginary part that increases with |pz|.

On the other hand, once the integration contour reaches the real axis, this imaginary
part of rL(t) can be considered to be ‘frozen’ as long as the time contour stays on the real
axis, because the velocity p + A(t) is real-valued there so its integral can only accumulate
real-valued changes.

One approach to this is to take this as a marker that the imaginary part of the position
is an artefact of the method, which is only valid as a construct for use in computations: it
no longer plays a role in the dynamics of the trajectory,∗ and it only needs to be tracked
as a calculational tool to compute the quantum Coulomb corrections, but one can argue
that it has no physical significance. (Of course, this can be said about any given concept
in a physical theory.) Even within that viewpoint, however, the imaginary part of the
trajectory is operationally as relevant as the real part. Moreover, it is important to note
that complex-valued trajectories are not confined to this method, and they are a rather
general feature of quantum mechanics when it is pushed into trajectory language [87–89].

In addition, connecting back to our motivations for finding trajectory language in the
first place, we set out to see if it is possible to derive a model, entirely within the TDSE
and without adding in the Coulomb field by hand, that includes the trajectory language
used by CTMC approaches. The ARM results then teach us that it is indeed possible, but
that the TDSE-based trajectories come with a complex component, and that one ignores
this at one’s own peril. With this we turn, then, to the consequences of this imaginary
part when it is included in the Coulomb interaction.

5.3 Emergence of temporal branch cuts

As we saw in chapter 4, in general it is possible to calculate the correlation interaction
potential 〈Vnm(rL(t))〉 when the argument r = rL(t) is complex, but this needs to be
confined to the safe region

Re(r2) > 0 (4.32)

where the gaussian-based methods give reasonable answers and we can be reasonably sure
that our models are correct, so we need to ensure that the laser-driven trajectory never

∗However, it is worth pointing out that for a complex-valued trajectory under the action of the Coulomb
potential this is no longer true, and the imaginary part will both change and affect the evolution of the
real part. Thus, dismissing the dynamics of the imaginary part of the trajectory over the real time axis is
equivalent to closing the door on extensions to the theory that include Coulomb-corrected trajectories.
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leaves this region.
In addition to this, the mean-field potential Un(r) also imposes requirements when

it is applied to a complex argument. These requirements can be similar to those of the
correlation interaction potential when Un(r) is taken to be the mean field of a full molecular
charge, but in this chapter we will focus on the bare basics of this potential and simply
take it to be a Coulomb potential, which is in any case always present. This will be plenty
to keep us busy, and most of the results generalize to a broader class of potentials.

The Coulomb potential is problematic because, when extended to its analytical con-
tinuation over complex positions, it requires a square root to remain analytical:

U(r) = − 1√
r2

= − 1√
x2 + y2 + z2 . (5.9)

This means that the Coulomb potential goes from having an integrable singularity at the
origin to having a branch cut along the ray r2 ∈ (−∞, 0]; this is where the standard
branch, as we defined it in (4.14), resolves the ambiguity of whether to assign

√
−1 to +i

or −i by having a discontinuous sign change of the imaginary part: numbers with a slightly
positive imaginary part are assigned to the neighbourhood of +i, as

√
−1 + iε ≈ i+ ε/2,

and numbers with a slightly negative imaginary part are assigned to the neighbourhood
of −i, as

√
−1− iε ≈ −i+ ε/2.

However, unlike our previous encounter with this branch cut in (4.14), where all we
needed was a definite integrand to calculate with, here the Coulomb cut has very deep
consequences, because the Coulomb potential is now being directly integrated in a com-
plex path integral. Indeed, if one integrates across the branch cut’s discontinuity, the
dependence on t of the Coulomb integrand in (5.6) ceases to be analytic, and one loses
the freedom that allowed the real contour of (2.57) to be deformed to pass through the
saddle-point ts in the first place. In other words, all the work since the initial saddle-point
approximation over the tunnelling time ts would become invalid.

To be somewhat more definite, the branch cut occurs when r2 is real and negative,
and since we can write it as

r2 = Re(r)2 − Im(r)2 + 2iRe(r) · Im(r), (5.10)

this means that the branch cut requires Re(r) to be smaller than Im(r) and occurs when
the two are perpendicular. This is relatively hard to picture geometrically, but fortunately
there are simpler tools to analyse this. In particular, we only need to consider the entire
potential as a single, function of time,

U(rL(t)) = − 1√
rL(t)2 , (5.11)

a single analytical function of the complex-valued variable t, and in this perspective the
branch cuts in U are imprinted on the complex time plane via the conformal mapping
t 7→ rL(t)2. To see this, we show in Fig. 5.4(a) an example of the Coulomb potential’s
behaviour, as a complex conformal map of the function

√
rL(t)2 (which has the same
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Figure 5.4: (a) Contour plot of the complex distance to the origin,
√

rcl(t)2, with the coloured
background along the real part and the red, black and blue orthogonal lines representing, respec-
tively, positive, zero and negative imaginary parts. The white lines are branch cuts where the real
part is zero and the imaginary part discontinuously changes sign. In (b) we show a simplification
of this picture, with the red lines showing the branch cuts, and the thin green lines the positive real
axis of r2. The shaded regions indicate the complex times for which Re(rcl(t)2) is negative, which
are undesirable when using gaussian and numerically-obtained ionic potentials, as they would be
unphysical there. The momentum displayed, p = (0.02, 0, 0.8), is such that the standard contour
(integrating down to the real part t0 of the saddle point ts and then along the real axis, shown
dotted in (b)) crosses a branch cut. Instead, one should choose a contour which passes through a
time between the branch cuts, which we label tCA and explore in detail in Sec. 5.4.

branch-cut structure as U , but omits the latter’s singularities).
The essential features of this function are the branch cuts, which are shown in white,

with a discontinuous sign change in the imaginary part of
√

rL(t)2. Unfortunately, the
full conformal map can obscure some information, like the position of the real axis, so we
show in 5.4(b) a sketch with the essentials of this function, with the branch cuts shown
in red. Here it is important to note that the standard integration contour of Fig. 5.2 –
straight down from the complex ionization time ts, and then along the real axis, shown
dotted in Fig. 5.4(b) – can indeed cross the branch cuts when the electron returns near
the ion.

This means that to preserve the analyticity of the Coulomb integral (5.6) one must
deform the integration contour away from the real axis until the integrand is continuous
and analytic throughout the integration path. This will correspondingly change the way
the complex position rL(t) moves through complex space, and the effect turns out to be
one of minimizing the imaginary part of the position at the time of recollision, when
Re(r) is small, so that the branch cut from (5.10) is then avoided. We show in Fig. 5.5
the corresponding change in the path of zL(t) = ẑ · rL(t) through the complex plane, as
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Figure 5.5: Trajectories in the complex z plane corresponding to the contours shown in
Fig. 5.4(b). The trajectory starts at z = −1/κ at time tκ, and departs somewhat from the
real position axis as the time goes down to the real axis at t0, as shown in Fig. 5.3. Along the
real axis, on the standard contour shown dashed, the electron goes to large negative Re(z)
before turning around towards the core. It then reaches the ion with a large imaginary part,
which causes a discontinuous jump in the square root of (5.9). Deforming the contours to
avoid the branch cuts, shown in the solid line, minimizes the imaginary part of z at the
moment of recollision; it is then slowly regained before detection at a large real time T . The
closest approach time tCA marks the minimum value of Re(rcl(t)2) once the x coordinate
is taken into account; there zcl is small but nonzero.

the time t traces out the original, standard time integration contour, shown dashed, and
the new, modified contour that avoids the branch cuts, shown as a solid line.

The relationship between the chosen temporal contour and the corresponding trajec-
tory in complex position space, particularly along z, is in general rather complicated and
it is a hard quantity to visualize. Similarly, the final momentum p has a strong effect on
the dependence of the potential U(rL(t)) as a function of time, sometimes very sensitively.
To complicate matters further, these variables are all intertwined, with the changes in the
momentum affecting the structure of the branch cuts, and therefore the possible paths
that the time integration contour can take.

The intertwining of these variables makes the analysis of these situations relatively
awkward, and to help disentangle these effects the author has written a software package,
the Quantum Orbits Dynamic Dashboard software available as Ref. 11, that enables the
user to visualize the effects on the complex-space trajectory of different modifications on
the complex-time integration path and of changes in the momentum or the ionization
time ts. We display, in Fig. 5.6, a screen capture of this software, along with its major
features. Among other features, the package allows the wide variety of different integration
paths to be visualized, by showing in real time the effects of such modifications on the
complex-space trajectories as well as the Coulomb integrand.

The presence of these Coulomb branch cuts in the complex plane has appeared in the
literature occasionally [153], but only rarely has it been necessary to shift the integration
path away from the standard contour [153, 154]. However, as we have shown, once the elec-
tron trajectory is obtained from the ground state through the ARM boundary matching,
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Figure 5.6: Screenshot of the Quantum Orbits Dynamic Dashboard software from Ref. 11, an open-
sourced Mathematica package. The main panels show, on the top row, the x and z coordinates
of the laser-driven trajectory, together with the Coulomb integrand, for an integration path over
complex time shown at bottom right over a branch cut sketch similar to Fig. 5.4(b). (Similarly, the
bottom-centre panel shows a complex-plane plot of rL(t)2.) This integration path, along with the
asymptotic momentum p, shown at bottom left, and the ionization time ts, can be dynamically
modified, with the effects of these modifications on the trajectory and the branch-cut layout tracked
in real time.

instead of having an initial condition imposed externally, they become inevitable.
In the rest of this chapter we will show how to handle these branch cuts, by providing

an algorithm to programmatically choose a correct integration path, and we will explore
the rich geometry unearthed by its key constituents, the times of closest approach to
the ion. Later on, in chapter 6, we will use this method to relate our calculations to
experimental features photoelectron spectra.

A more recent analysis [55], focusing on ATI spectra at the crossover between direct and
rescattered electrons at 2Up, also confirms our findings, showing that the photoelectron
spectrum there can only be analyzed correctly if a complex tunnel exit is taken into
account, with the attendant branch cuts similarly forcing changes in the integration path,
which can again be handled well with the method that we provide below.

5.4 Times of closest approach

We see, then, that it is possible for branch cuts of the Coulomb potential to cross the
real axis, thereby precluding the use of the standard integration contour of Fig. 5.2 for
the Coulomb integral in (5.6), but that it is still perfectly possible to choose temporal
integration paths which remain valid by avoiding the branch cuts, passing through the
“slalom gate” left by the branch cuts of U(rL(t)) as in Fig. 5.4(a).

This can easily be done by hand, by shifting the contour appropriately, if only a
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single or a few momenta need to be handled, but it is certainly infeasible if one needs
to compute a photoelectron spectrum, sampling a large number of different momenta.
What is needed, then, is a computational approach: we require a programmatic way to
automatically choose the correct integration contour for any given momentum.

The key to obtaining this approach is to examine in detail the space between the two
branch cuts, as shown in Fig. 5.7. Each branch cut is a contour of constant Re(

√
rL(t)2),

which means that the neighbouring contours must closely follow its direction, and circle
around it when it terminates at the branch point.
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Figure 5.7: Closer view of the region between the branch cuts in Fig. 5.4(a). The space
between any two branch cuts always contains a saddle point tCA, as this is the only way
to join the curvatures of the contours next to each branch cut. Any contour that goes
from left to right of the image must have a minimum of Re

(√
rL(t)2

)
; passing through

the saddle point maximizes this minimum.

In the slalom-gate configuration of Fig. 5.4(a), the branch cuts come in pairs that face
each other, and they must therefore have two sets of curved contours at Re(

√
rL(t)2) =

const., facing each other, that must somehow meet in the middle; the only way for this to
happen is for there to be a saddle point between the branch cuts. This saddle point is the
crucial object which enables the programmatic choice of a contour that avoids the branch
cuts, since the saddle point is at the ideal location in between the two cuts. Moreover, the
saddle point has a deep physical and geometrical significance, which we will now explore.

To begin with, it is clear from Fig. 5.7 that if we track the real part of the complex
distance to the origin, Re(

√
rL(t)2), over any integration path which crosses the complex t

plane from left to right of the region shown in the figure, Re(
√

rL(t)2) must always de-
crease, reach a minimum, and then increase again. For some paths – the ones that cross
the branch cuts – the minimum value of Re(

√
rL(t)2) is zero, but these are forbidden as

integration paths. From within the allowed paths, the minimum is shallowest when the
path passes through our saddle point.

For this reason, then, we call the saddle point the time of closest approach, and we label
it tCA. To be precise, then, an integration path that passes through t = tCA maximizes the
minimum value of the real part of the distance to the origin, Re(

√
rL(t)2); in addition,
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it can also be seen to maximize the minimum value of the absolute value,
∣∣∣√rL(t)2

∣∣∣, as
well. Intuitively, it permits the furthest possible approach to the ion, keeping the origin
at arm’s length as much as possible.

Similarly, when calculating the Coulomb potential along such a contour, this choice of
path minimizes the maximum value of the real part and absolute value of 1/

√
rL(t)2 (for

valid contours which do not cross the branch cuts), so that the Coulomb interaction is kept
as bounded as possible throughout the integration. As long as the potential U(rL(t)) stays
continuous and analytic, this is not essential (as the integral in (5.6) will not change) but
passing through tCA means reaching a smallish value through adding smallish quantities,
rather than through cancellations between bigger ones. In addition, this choice optimizes
the applicability of the approximations that led to (5.6), and it admits the clearest physical
interpretation by keeping the imaginary part of the position within the tightest relevant
bound possible at the points where this is necessary.

To actually find these saddle points, one simply looks for the zeroes of the time deriva-
tive of

√
rL(t)2. More simply, though, this can be reduced to the zeroes of d

dt
[
rcl(t)2],

since they coincide with the zeroes of the square root, so the main criterion is simply

rL(tCA) · v(tCA) = 0. (5.12)

This equation is deceptively simple, and one must remember that the left-hand side is
a complex-valued function of time through Eq. (5.1). Nevertheless, it has a compelling
physical interpretation, for if a classical electron passes near the nucleus then it is closest
to the origin when its velocity and its position vector are orthogonal. This then lends
further support to our choice of name for the tCA.

In this spirit, then, it is worthwhile to investigate the classical solutions of (5.12) before
exploring the solutions in the complex quantum domain. As we shall see, both domains
exhibit rich geometrical structures which are closely related to one another. After exploring
the geometrical implications in both contexts, we shall use this knowledge to automatically
generate correct integration paths for any momentum.

5.4.1 Classical solutions

In this context, we can introduce a classical equivalent of our theory by simply taking the
real part of our working laser-driven trajectory, as

rcl(t) = Re
(∫ t

ts
p + A(τ) dτ

)
, (5.13)

and only considering real times. This simplified model is widely used as the classical
version of tunnelling, since it is capable of encapsulating much of the tunnelling dynamics
in terms of the tunnel exit position rL(t0) after integration over the downward leg of the
standard contour, while still having a real-valued trajectory that lends itself to further
manipulation, as

rcl(t) = Re (rL(t0)) +
∫ t

t0
[p + A(τ)] dτ. (5.14)
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Indeed, this real-valued trajectory is the starting point for classical-trajectory based theo-
ries like CCSFA or Classical Trajectory Monte Carlo methods, which keep the initial term
Re(rL(t0)), and then modify the subsequent continuum dynamics.

Within this model, then, the closest-approach points obey the real part of our initial
equation (5.12),

Re [rL(tclas
CA ) · v(tclas

CA )] = rcl(tclas
CA ) · v(tclas

CA ) = 0, (5.15)

taken over real times. Unfortunately, this equation – like the full quantum equation (5.12) –
has more solutions than the closest-approach times we want, and these are not always dis-
tinguishable from the desired tCA. Specifically, the turning points of the classical trajectory,
away from the core, are also solutions of (5.15), since they are also extrema of r2. On
the quantum side, the surface of Fig. 5.4(a) also contains saddle points at ωt ≈ π/4 and
ωt ≈ 3π/4, which correspond to the turning points shown in Fig. 5.5 to the right and left
of the position at t0, respectively. This means that, to be able to use the closest-approach
times as an effective tool to avoid the branch cuts, we will need to distinguish the crucial
mid-gate tCA points from the other solutions, and in general this will not be trivial.

In certain cases, though, this is easy, such as for the on-axis case when p⊥ = 0, where
(5.15) reads

Re (zL(tclas
CA )) vz(tclas

CA ) = 0, (5.16)

with solutions that separate cleanly into turning points, for which vz(tclas
CA ) = 0, and closest

approaches which degenerate to nucleus flybys at zcl(tclas
CA ) = 0, as shown in Fig. 5.8(a). In

this case, the turning points can additionally be classified as minima and maxima of rcl(t)2,
shown respectively in green and red in Fig. 5.8(a), by evaluating the sign of d2

dt2 rcl(t)2. At
nonzero p⊥, it is the collisions that will turn into useful closest-approach times.

One of the most interesting features of Fig. 5.8(a) is the intersections of the two
curves shown, the points at which zcl(t) = 0 as well as vz(t) = 0, which we will term
soft recollisions for obvious reasons. In chapter 6 we will link these soft recollisions to
interesting physical effects and features on the photoelectron spectra, but for now we will
focus on their pivotal role within the geometry of the times of closest approach. Even in the
restricted geometry of Fig. 5.8(a) they are already crucial, since at these points the number
of available roots as pz is swept across them changes from one to three, as an ‘inward’
turning point turns into an ‘outward’ turning point flanked by two closest-approach points.
The classical trajectory shows exactly this behaviour, as shown in Fig. 5.9, with this change
in pz.

The roots of (5.16) can also merge at the extremes of the sinusoidal turning-point
curve of Fig. 5.8(a). At these points, the longitudinal momentum becomes greater than
the oscillation amplitude F/ω, and the velocity vz(t) = pz − F

ω sin(ωt) no longer changes
sign. The resulting behaviour of the trajectories is shown in Figs. Fig. 5.9(b) and (c), and
resembles pulling a winding string until the turns are straight.

The closest-approach solutions of (5.15) become more interesting when one allows a
nonzero transverse momentum p⊥ = px. Here the solutions form a single coherent surface,
shown in 5.8(b), that consists of a number of bounded lobes joined together at the soft
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Figure 5.8: The classical closest-approach times with p⊥ = 0, satisfying (5.16), separate
into two curves (a): turning points with vz = 0, and collisions with zcl = 0, with their
intersections representing soft recollisions. At the points marked a, b and c the different
roots merge and disappear, with the corresponding trajectories displayed in Fig. 5.9. For
nonzero p⊥, the solutions of the vector equation (5.15) form a single coherent surface (b)
with a sequence of bounded lobes which connect at the soft recollisions, where the surface
is locally a cone. Local minima and maxima of rcl(t)2 are shown respectively in green
and red in both panels. At the boundary between the two, a maximum and minimum
meet, merge and disappear, as shown in the trajectory of Fig. 5.9(d); the point then leaves
the surface. The side and bottom panels show the projections of the surface on pz and
px respectively. An interactive 3D version of this figure is available as Fig. S1 in the
Supplementary Information [12].

recollisions, which locally look like cones. Thus, it is possible to continuously connect any
two roots of (5.15) via a path on the surface: the inward turning points and the recollisions,
shown as separate green curves in Fig. 5.8(a), can always be smoothly connected via the
px 6= 0 component of the surface. This, in turn, precludes the existence of a simple
criterion to distinguish one from the other in the general case.

On the other hand, the outward turning points can still be distinguished, as they are
the local maxima of rcl(t)2 and have a different sign of the second derivative d2

dt2 rcl(t)2.
These maxima are shown in red in Figs. 5.8(a) and (b), and they form the “left-facing”
side of the surface in Fig. 5.8(b). Thus, any horizontal line of constant momentum must
enter the surface through a maximum of rcl(t)2 (red) and leave it through a minimum

https://electrondynamicsincomplextimeandspace.github.io/#figure-s1
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Figure 5.9: Classical trajectories from near the critical points marked a-d in Fig. 5.8, where
the closest-approach roots of (5.15) can merge and disappear, indexed by their reduced
momentum (ωpx/F, ωpz/F ). The dots show closest-approach points, which satisfy (5.15)
and for which the tangent to the trajectory is orthogonal to the radius vector. In the
neighbourhood of a soft recollision, (a), an inward turning point turns into an outward
turning point flanked by closest-approach points as the momentum increases. In (b) and
(c) two turning points, a maximum and a minimum of rcl(t)2, merge and disappear as pz
goes past the oscillation amplitude F/ω, either in the positive (b) or negative (c) direction,
so vz no longer changes sign and no turning points occur. Similarly, as the transverse
momentum px increases in (d) the x component of the velocity becomes too great for the
tangent to be orthogonal to the radius vector; at that point a maximum and minimum of
rcl(t)2 merge and disappear, leaving rcl(t)2 to grow monotonically.

(green), because the minima and maxima must alternate for any given trajectory. This
means that the red (maximum) side of the surface points towards negative t, and the green
(minimum) side points towards positive t. At the boundary between these two parts of the
surface, a maximum and a minimum merge and disappear, and the trajectory will then
behave as shown in Figs. 5.9(b), (c), or (d), depending on which direction the boundary
is approached (i.e. towards positive pz, negative pz, or increasing |px|, respectively).
Horizontal lines of constant momentum will be tangent to the surface at this boundary,
and the corresponding trajectory will have a double root of (5.15).

5.4.2 Quantum solutions

The quantum solutions have a richer geometry, with an additional dimension – imaginary
time – to be occupied. The immediate effect of this is to increase the number of available
solutions: while in the classical case two real solutions of (5.15) can merge and disappear,
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Figure 5.10: The quantum solutions of the closest-approach equation (5.12) form multiple
surfaces which wrap around the classical solutions of Fig. 5.8(b), closely following the lobes,
where the latter exist, and departing at the edges to form pairs of parallel surfaces with
imaginary parts of opposite sign. Black dots represent largely real solutions, with red
(blue) dots representing solutions with positive (negative) imaginary part. An interactive
3D version of this figure is available as Fig. S2 in the Supplementary Information [12].

as they do in the points marked b and c in Fig. 5.8(a), in the quantum case the complex
solutions of (5.12) are not lost, but will instead move into imaginary time and remain
present.

In general, the quantum solutions will be close to the classical ones when the latter
exist. As one approaches the end of a lobe on the classical solution surface of Fig. 5.8(b),
however, the quantum solutions approach each other close to the real axis and then diverge
into positive and negative imaginary time, keeping a relatively constant real part. If one
then projects this to real times, the result is a pair of surfaces which closely follow the red
and green parts of the classical surface, and then diverge into roughly parallel planes as
they reach the end of each lobe. We show this behaviour in Fig. 5.10.

The first few closest-approach solutions are relatively easy to handle, and depend
smoothly on the momentum. This includes the first minimum and maximum of rL(t)2,
like the ones in Fig. 5.4(a), the birth time ts itself, and a conjugate solution with negative
imaginary part which should be ignored. These solutions occupy specific regions of the
complex t plane, as shown in Fig. 5.11, and they can be identified consistently. Moreover,
these solutions exhibit close approaches at ωt ≈ π/2 and ωt ≈ 3π/2, which are the
quantum counterpart of the classical maximum-minimum mergers shown in Figs. 5.9(b)
and (c). These are evident in Fig. 5.11 as the converging surfaces at those times, and they
are of relatively limited interest.

The most important tCA close approaches occur at and near the soft recollisions, shown
inside the gray rectangle of Fig. 5.11(a) and in Fig. 5.11(c), with a complicated momen-
tum dependence which we explore below. In the quantum domain, soft recollisions again
represent interactions between three different closest-approach roots. Unlike the classical
domain, however, the roots do not merge; instead, two of them move into imaginary time
after a three-way avoided collision, shown in Fig. 5.11(c) between the points marked 9

https://electrondynamicsincomplextimeandspace.github.io/#figure-s2
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Figure 5.11: The quantum closest-approach times, which satisfy (5.12), on the complex time
plane. In (a) we show the closest approach times corresponding to a grid in momentum
space (shown inset). These are generally grid-like in the time plane, though after ωt = 3π/2
some solutions lie close to the real axis and cannot be discerned in this view. At the cusps of
Figs. 5.8(b) and 5.10, which correspond to soft recollisions, the regular grid-like behaviour
breaks and the solutions can no longer be uniquely tagged. This can be seen by following
the semicircular path in momentum space shown in (b), for which there are three solutions
in the gray rectangle of (a), shown in detail in (c). Going once around the semicircle moves
the tCA along the bow-shaped curves and, upon returning to the initial point, permutes
them cyclically. In particular, this path contains an avoided collision between the points
marked 2 and 3, and a three-way avoided collision between points 9 and 10. This three-
way interaction marks the soft recollision itself. An interactive 3D version of this figure,
with considerable additional detail, is available as Figs. S3 and S4 in the Supplementary
Information [12].

and 10. The proximity between the multiple saddle points mirrors the increased time the
electron spends near the ion in the neighbourhood of a soft recollision.

More interestingly, this three-way collision marks a crucial topological change in the
configuration of the branch cuts associated with the recollision, as shown in Fig. 5.12.
Each of the outer saddle points, t (1)

CA and t (3)
CA , has a pair of branch cuts associated with

it, in the same ‘slalom gate’ configuration as in Fig. 5.7, and these go off into imaginary
time. However, the way in which they do so changes as the longitudinal momentum pz

https://electrondynamicsincomplextimeandspace.github.io/#figure-s3
https://electrondynamicsincomplextimeandspace.github.io/#figure-s4
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passes the momentum psr
z of the soft recollision.

For pz below psr
z , as in Fig. 5.12(a), the branch cuts loop back to imaginary time

without crossing the real time axis. As with the low-momentum trajectory of Fig. 5.9(a),
the trajectory does not quite reach the collision, and the associated branch cuts do not
force a change of contour. At pz = psr

z , however, the branch cuts touch and reconnect, and
for pz > psr

z the topology changes to the one shown in Fig. 5.12(b). Here the trajectory
does pass the core, and the associated branch cuts do cross the real axis, forcing the
integration contour to change and pass through the gates.

This process has profound implications for the ionization amplitude, because these
drastic changes in the integrand occur precisely when it is largest. Thus, choosing the
wrong contour in this region accounts for the largest contributions to the integrand, with
a correspondingly large effect on the integral. More surprisingly, once the contour is forced
to pass through the ‘gate’ tCAs, for pz just above psr

z , their contributions have the effect of
suppressing the ionization amplitude there. We will see how this works in more detail in
chapter 6.

We now turn to the momentum dependence of the closest-approach times near the
soft recollision, which again presents interesting topological features. The main problem
is illustrated in Figs. 5.11(b) and (c): the different solutions of (5.12) mix, and there is
no longer any way to distinguish them from each other, as there was in the classical case.
More concretely, traversing a closed loop in momentum space, like the semicircle shown in
Fig. 5.11(b), will move the roots around in such a way that when one returns to the initial
point the overall configuration is the same, but the saddle points have been permuted
cyclically.

Topologically, this means that the surface defined by (5.12) (a two-dimensional surface
in a four-dimensional space) does not separate into distinct components; instead, the
surface has a single connected component after ωt = 3π/2. On the other hand, the surface
itself remains singly connected. Both of these behaviours are explored in more detail in
Figs. S3 and S4 in the Supplementary Information [12].

This mixing behaviour is unusual in the quantum orbit formalism, where the norm
is for rather elaborate indexing schemes to be possible [52, 155], partly because there is
usually a single free parameter that governs the motion of the saddle points. Here the
control space is two-dimensional, which allows for nontrivial closed loops inside it, and
this defeats the possibility of attaching any type of label to individual roots of (5.12).

To be more explicit, it would be convenient to have an alphabet A (i.e. a set of discrete
labels to tag the roots with, analogous to the set {(α, β,m)} of Refs. 52, 155), together
with a tagging function A : S → A that takes the solution set

S =
{

(p, tCA) ∈ R3 × C
∣∣∣∣ (p + A(tCA)) ·

∫ tCA

ts
(p + A(t))dt = 0

}
(5.17)

of all closest-approach times and assigns each momentum and tCA a label A(p, tCA) ∈ A in
a continuous way, and such that for each label a ∈ A the preimage A−1(a) ⊂ S contains
a unique root for each momentum p. Unfortunately, the existence of nontrivial loops like
the one in Figs. 5.11(b) and (c) means that any such mapping must either be discontinuous

https://electrondynamicsincomplextimeandspace.github.io/#figure-s3
https://electrondynamicsincomplextimeandspace.github.io/#figure-s4
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(at locations which must therefore be arbitrary) or assign a single label to all the roots of
(5.12) after Re(tCA) > 3π/2.

Finally, an interesting consequence of the mixing between roots is that, at certain
specific values of px and pz, the roots must merge, giving double roots of (5.12). However,
this behaviour depends very sensitively on the momentum, and it can safely be ignored.
(In fact, the very difficulty of tagging the roots, caused by the mixing, makes finding the
merge momentum an elusive numerical problem.)

5.5 Navigating the branch cuts

We have seen, then, that it is possible, given any pair of branch cuts, to consistently
find a point tCA that sits between them and guarantees a safe passage between the cuts
for an integration path. However, these points are found as the solutions of an equation
that yields several other roots, and in general it is impossible to distinguish the different
types of roots.

Moreover, as shown for example in Fig. 5.12(e), it can be actively harmful to pass
through some of these roots: not all the tCA are useful stepping stones, so in addition to
having a way to find the set of stepping stones, we also require a way to choose which tCAs
the path should go through, and in what order.

This certainly appears as a difficult problem, because such an algorithm should know
to reject t (1)

CA and t
(3)
CA in Fig. 5.12(e), but to take the integration path through them in

Fig. 5.12(f), even though locally the surface of
√

rL(t)2 at each of them is essentially
identical, and the two are very close together in momentum space.

Fortunately, though, it is indeed possible to algorithmically distinguish between the two
cases, based on the geometrical fact shown in Figs. 5.12(c) and (d): the topological change
in the structure of the branch cuts between Fig. 5.12(e) and Fig. 5.12(f) happens simulta-
neously with a change in the sign of the real part of the squared velocity, Re(v(t (j)

CA )2), of
the outer saddle points. Thus, in the closed topology of Fig. 5.12(f), where the integration
path should pass through all of the t (j)

CA , the real part of the kinetic energy is positive at
those saddle points, whereas in the open topology of Fig. 5.12(e), where the path should
ignore the outer roots, Re(v(t (1)

CA )2) and Re(v(t (3)
CA )2) are both negative.

The physical content of this criterion is quite clear: in the quantum-orbit formalism,
the classically forbidden regions are readily identified in the complex time plane as those
regions where the kinetic energy 1

2v(t)2, or at least its real part, is negative. The unde-
sirable saddle points of Fig. 5.12(e) therefore require the trajectory to tunnel towards the
core to be reached, and this is clearly unwanted on physical grounds.

On the other hand, a formal proof of the simultaneity of the topological change
in the branch cut structure with the emergence of the tCA from the ‘barrier’ region
where Re(v(tCA)2) < 0 is still lacking; indeed, it appears rather challenging to relate
the two structures, since one is a global topological measure and the other is a local mea-
sure of a different, only distantly related, dynamical quantity. Thus, at present, this is an
empirical fact, with a formal proof left as an interesting open question of the mathematical
aspects of this work.
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Figure 5.12: During a soft recollision, the quantum times of closest approach will perform a three-way close
approach, like that shown in Fig. 5.11(c) at the first soft recollision between the points 9 and 10. At this close
approach, the branch cuts associated with these saddle points will reconnect and change topologies, as shown in
(a) and (b) (and sketched in (e) and (f), as in Fig. 5.4(b)). At the point of the topological change, the outer
saddlepoints t (1)

CA and t (3)
CA emerge from the classically forbidden region, and the real part of their kinetic energy

Re( 1
2 v(t)2) changes sign, as shown in (c) and (d). In (g) and (h) we show the corresponding trajectories in the

complex z plane for those contours. The motion along z is similar to Fig. 5.9(a), with a modest imaginary part
as in Fig. 5.3, and if the core is not reached does not represent a problem. For the slightly higher momentum
of (h), however, the trajectory passes the origin and would cross the associated branch cut if taken along the dashed
integration contour of (f), so the contour must be deformed to avoid it, as shown by the solid line. Here px = 0.001.
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On the other hand, a formal proof of the simultaneity of the topological change
in the branch cut structure with the emergence of the tCA from the ‘barrier’ region
where Re(v(tCA)2) < 0 is still lacking; indeed, it appears rather challenging to relate
the two structures, since one is a global topological measure and the other is a local mea-
sure of a different, only distantly related, dynamical quantity. Thus, at present, this is an
empirical fact, with a formal proof left as an interesting open question of the mathematical
aspects of this work.

With this final piece in place, we can set some definite rules for how to choose a
contour path. In general, it is sufficient to take, in order of increasing Re(tCA), those
closest-approach times which (i) occur after ionization, (ii) have a reasonably bounded
imaginary part, and (iii) have positive kinetic energy.

To this we add two exceptions. First, we always include the first inward turning point,
which lies in the half-strip−π/2 < Re(ωt) < π/2, Im(t) > 0 (as exemplified in Fig. 5.11(a))
and which helps the integration path avoid regions where Re(v(t)2) < 0 and there is no
need to cross them. Secondly, we always include the first closest-approach time, in the
strip π/2 < Re(ωt) < 3π/2, Im(t) > 0, where it can always be consistently identified, is
always necessary to keep the contour on track, and can in some cases have an imaginary
part larger than the ionization time.

Putting all of this together, the concrete set of rules we use for choosing the contour
is to take those tCAs for which

Re(ωtCA) > ωt0 + π/5 and
−1

3τT < Im(tCA) ≤ Im(tκ) and
Re
(
v(tCA)2) > −u,

or −π/2 < Re(ωtCA) < π/2 and
0 ≤ Im(tCA) < τT,

or π/2 < Re(ωtCA) < 3π/2 and
Im(tCA) > 0,

and then traverse them in order of increasing Re(tCA). (Here u is an adjustable numerical
precision, for additional flexibility with the precise moment of emergence of the tCAs from
the ‘barrier’, which we set by default to 10−8 a.u.)

These rules are relatively heuristic, and they have a fair amount of leeway around them
in the choice of parameters. (For example, the choice of −1

3τT as a lower bound for Im(tCA)
is not particularly strict, and it serves mostly to rule out the extraneous conjugate solution
at Im(t) < 0, −π/2 < ωt < π/2 shown in Fig. 5.11(a).) However, they work well over
the relevant region of photoelectron momenta to produce correct integration path choices,
particularly including the delicate changes required near soft recollisions as exemplified in
Fig. 5.12, so they are good enough for the job. (Nevertheless, when using such contours
it is always necessary to use a numerical integration algorithm that can detect when the
integrand has a discontinuity, and if any such errors are reported during integration they
should be duly investigated.)
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Figure 5.13: Sample integration paths produced by the tCA choosing algorithm described in the
text. Most momenta are straightforward (a), but near-recollision momenta, like the one shown
in Fig. 5.4, do require careful handling, as shown in (b). The algorithm correctly handles soft
recollisions (c, d), as well as higher momenta with harder recollisions (e).

We display in Fig. 5.13 some sample integration contours produced (automatically)
with this criterion, which is implemented in software in Ref. 9. In general, the navigation
is relatively straightforward, and there are never any problems when pz < 0 or p⊥ is
sizeable, in which case the contour looks as in Fig. 5.13(a). For electrons that get closer
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to the nucleus during their oscillations, however, the branch cuts do require more careful
navigation, as we have seen, and this is still handled well, as shown in Fig. 5.13(d).

Another feature to note is that in some very specific cases, very close to a soft recollision
as shown in Fig. 5.12 and particularly Fig. 5.12(f), the integration path chosen by the above
algorithm is topologically correct, but it may pass very close to a Coulomb singularity.
While this is formally not a problem, it is not conceptually ideal, so there is some room
for improvement in future work if it becomes necessary.

In addition, it is important to note from Figs. 5.12(e) and (f) that at certain momenta,
very close to the soft recollision, the gray areas where Re(rL(t)2) < 0 that surround the
branch cuts can join up, creating a passage where all the possible integration paths must
necessarily have parts where Re(rL(t)2) < 0. As far as the Coulomb potential goes, this is
not really a problem, because the branch cuts have been correctly handled, but this is also
the region where we can no longer trust any correlation interaction potentials obtained
through numerical, quantum chemical calculations, as we saw in chapter 4. Fortunately,
this region is very small, and as we shall see in the following chapter the dynamics of the
photoelectron yield are dominated by the Coulomb dynamics of the direct term, so the
correlation-driven yield can safely be ignored in that range.



Chapter 6

Low-Energy Structures and Near-Zero Energy Structures

Over the past four chapters we have built up a semiclassical theory of tunnel ionization,
based on the Analytical R-Matrix framework, and we have shown how to tackle several
difficulties that come up within it. In this chapter we turn to one of the crucial concepts
that emerged as a harsh test of our integration-path toolset – soft recollisions, where
multiple sets of branch cuts and closest-approach times converge and interact in ways
that required additional tooling – and we relate them to specific features in experimental
photoelectron spectra known as Low Energy Structures (LES) and (Near-)Zero Energy
Structures (NZES).

After reviewing in section 6.1 the known experimental features of this structures, and
the existing theoretical explanations for these low-energy features, we will show in sec-
tion 6.2 that the soft recollisions we met in chapter 5 give rise to photoelectron peaks
that correspond to the LES, and which have a dynamically equivalent analogue at much
lower energy that is consistent with the NZES. We then show, in section 6.3, that these
trajectories also admit a simple classical description, whose scaling can be analysed easily
to suggest that the NZES should become easier to probe using target species with higher
ionization potential.

The material in this chapter has appeared previously in references

4. E. Pisanty and M. Ivanov. Slalom in complex time: emergence of low-energy
structures in tunnel ionization via complex time contours. Phys. Rev. A 93 no. 4,
p. 043 408 (2016). arXiv:1507.00011.

5. E. Pisanty and M. Ivanov. Kinematic origin for near-zero energy structures
in mid-IR strong field ionization. J. Phys. B: At. Mol. Opt. Phys. 49 no. 10,
p. 105 601 (2016).

6.1 Low-Energy Structures in tunnel ionization

As we saw in the Introduction, the basics of ionization in strong, long-wavelength fields
were mostly worked out in the 1960s by Keldysh, Faisal and Reiss, and then further refined
by Popov, Perelomov and Terent’ev. Collectively, these theories describe ionization in
regimes of high intensity, with the Keldysh adiabaticity parameter γ = κω/F =

√
Ip/2Up

distinguishing what is known as the multiphoton regime at γ � 1 from the tunnelling
regime at γ � 1.
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Most importantly, the expectation from this background is that at longer wavelengths
and stronger fields, as γ becomes smaller, the tunnelling picture becomes more and more
appropriate, and its predictions become more and more accurate. In terms of the photo-
electron spectrum, this describes a smooth gaussian envelope, modulated by discrete rings
at energies En = nω− Ip−Up coming from absorption of discrete numbers of photons or,
alternatively, from the interference of wavepackets emitted at different cycles of the laser
pulse. In most long-wavelength experiments, though, the spacing ω between the different
rings becomes smaller, and eventually they wash out: each atom emits electrons redshifted
by the ponderomotive potential Up coming from a Stark shift in the continuum [156], and
this intensity-dependent shift can vary across the laser focus, averaging out the rings and
leaving a smooth distribution that follows the SFA envelope.

Given this expectation of progressively smoother electron distributions at longer wave-
lengths, it came as a surprise when, in 2009, experiments at 1 µm and longer wavelengths
observed a large spike in photoelectrons at very low energies [157, 158], as shown in
Fig. 6.1. Quickly christened Low-Energy Structures (LES), these spikes form in energy
regions much smaller than the usual scales considered in such experiments: in the condi-
tions of Fig. 6.1, the direct electrons have a typical energy scale of 2Up ≈ 110 eV and the
rescattered electrons are typically at the order of 10Up ≈ 550 eV, whereas the LES has a
higher edge EH at about 5 eV.

Figure 6.1: Detection of low-energy structures by Blaga and coworkers, showing a large
spike at low electron energies that is not predicted by the Keldysh-Faisal-Reiss (KFR)
strong-field approximation treatment. The results are shown for atomic argon and molec-
ular nitrogen and hydrogen, under a 2 µm field of intensity 1.5× 1014 W/cm2, having a
Keldysh parameter of approximately γ ≈ 0.36. Figure excerpted from Ref. 157.

Moreover, this upper edge was tested from the beginning to scale, roughly, as 1
10Up,

which points to a dynamical origin for the structures [158, 159], a fact that gets completely
missed by the SFA treatment. On the other hand, numerical simulations by Blaga and
coworkers [157, 160] also showed that the structure can be reproduced within numeri-
cal time-dependent Schrödinger equation (TDSE) simulations in the single-active-electron

Fig. 6.1 reprinted by permission from Macmillan Publishers Ltd: Nature Phys. 5, p. 335 © 2009.

http://www.nature.com/nphys
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approximation, so the problem becomes one of finding a suitable mechanism behind the
structures.

The discovery of the LESs sparked a significant effort on the part of both theory and
experiment, to better characterize the observed features of the structures and to produce
a solid understanding of the mechanisms behind them. Experimentally, the LES was
quickly joined by a wealth of intricate structures at that energy range and below, known
as Very Low Energy Structures (VLES), and subsequently yet another peak known as the
(Near-)Zero Energy Structure (NZES). On the theory side, there is a strong consensus
that most structures in this range are directly caused by the Coulomb effect of the field,
especially when acting on the soft recollisions we explored in chapter 5 – trajectories with
a turning point close to the ionic core.

In this chapter we will begin by exploring, in section 6.1.1, the known experimental
features of the LES and associated structures, before moving on in section 6.1.2 to review
the current models for their origin, as well as the proposed explanation for the NZES in
6.1.3. We will then move on, in section 6.2 to the role of soft recollisions in the ARM
theory we developed in the previous chapters, and how they impact the ARM predictions
on photoelectron spectra; specifically, we will show how the LES peak arises from soft
recollisions within ARM theory, and that it is mirrored by a second peak that is consistent
with the NZES. Finally, in section 6.3, we will distil the ARM results into two paired sets
of classical trajectories, at the energy ranges of the LES and NZES, with radically different
scaling properties, which then suggests avenues for further testing of the connection.

6.1.1 Experimental observations of low-energy structures

On the experimental side, the discovery of the LES was rather quickly followed by the
observation of more structures at even lower energy, which were rather quickly dubbed
Very Low Energy Structures (VLES) [161, 162]. These detections, shown in Figs. 6.2 and
6.3, unearthed a second set of peaks at even lower energy, showing that there was still
more dynamics to be unearthed in the low-energy region of ionization by mid-IR pulses.

The initial observations were relatively noisy, but in addition to the spike found by
Blaga et al., which corresponds to the gentle hump at ∼3 eV for the black curve at 2 µm
in Fig. 6.2(a), for example, there was clear evidence of a second structure at lower energy,
perhaps even more marked than the original LES peak in some cases. Similarly, later mea-
surements [162] examining the structures found them to be universal features, appearing
in multiple different noble gases and at a range of intensities and wavelengths, generally
in the tunnelling regime of low γ (∼0.65 for neon, ∼0.8 for krypton, and ∼0.85 for xenon).

Unfortunately, however, the initial experiments had relatively little resolving power on
these structures due to the relatively small volume of data they were able to accumulate.
The regimes at γ ∼ 1 and higher have been explored quite thoroughly, and the low-energy
set of structures appears in the tunnelling regime where γ = ωκ/F is low. This in turn
requires a high intensity (which is bounded above by saturation of the sample) or a long
wavelength, which is the regime that’s the LES/VLES experiments explored.
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Figure 6.2: Experimental observation of Very Low Energy Structures [161], showing in (a)
the rise of a spike in low-energy electrons in the ionization of xenon at 8× 1013 W/cm2 and
wavelengths between 800 nm and 2 µm. For the longer wavelengths at 2 µm and 1.5 µm,
shown in (c) and (e) respectively for two different intensities, two distinct humps (the LES
and the VLES) are visible, marked by the dashed lines. Parts (b) and (d) show classical
Monte Carlo simulations for the parameters of (a) and (c). Figure excerpted from Ref. 161.

Figure 6.3: Photoelectron energy spectra and longitudinal momentum distributions for the
ionization of neon ((a), (d)), krypton ((b), (d)) and xenon ((c), (f)) at the wavelengths and
intensities shown [162]. The VLES appear as the peaks marked with solid arrows, while
the LES are marked with dashed arrows. Figure excerpted from Ref. 162.

However, producing intense laser pulses away from the comfort zone around 800 nm
afforded by titanium-sapphire laser systems is rather challenging, because to reach the
required intensities it is generally necessary to have a very short pulse, and in turn this
requires a very broad bandwidth. Generally speaking, there are few laser systems with a

Fig. 6.2 reprinted with permission from W. Quan et al., Phys. Rev. Lett. 103, 093001 (2009). © 2009
by the American Physical Society.
Fig. 6.3 reprinted with permission from C.Y. Wu et al., Phys. Rev. Lett. 109, 043001 (2012). © 2012 by

the American Physical Society.
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bandwidth as broad as titanium-sapphire amplifiers that can produce the required power.
To reach longer wavelengths, then, most experiments turn to systems that use optical
parametric chirped-pulse amplification (OPCPA), where a strong laser pump is used to
amplify a lower-frequency pulse by difference-frequency generation.

Unfortunately, though, OPCPAs are generally challenged when compared with tita-
nium-sapphire systems in terms of the repetition rate they are able to produce, and this
means that the initial experiments could only collect a limited amount of data which was
insufficient for doubly-differential measurements (like angle- and energy-resolved photo-
electron spectra) that would help better discern the origin of the structures. This is only
a technological problem and not a fundamental limitation, and it was solved over the span
of a few years, but it continues to be one of the limitations on what sorts of measurements
can be performed in this regime.

Once the repetition-rate limitation was overcome, it became possible to obtain multi-
dimensional views on the photoelectron momentum distribution [163], which began to
exhibit evidence of angular variation in the VLES structures, with a hint of a V-shaped
structure; this was then confirmed when kinematically complete measurements of the
photoelectron momentum distribution were performed [164], taking full advantage of im-
provements in detector technology in the form of the Cold Target Recoil Ion Momentum
Spectroscopy (COLTRIMS) technique implemented in reaction microscope (ReMi) exper-
iments [146, 165].

More specifically, the VLES energy range is associated with a V-shaped structure with
its cusp near the zero of momentum, as shown in Fig. 6.4, which is the dominating feature
of the low-energy photoelectron momentum distributions, along with yet another peak at
even lower energy.

Figure 6.4: Low-energy momentum distribution (in linear and log scale for the longitudinal
and transverse momentum, respectively) for unaligned molecular nitrogen ionized by a
3.1 µm field at 1014 W/cm2 [164], showing peaks and structures at the LES and VLES
ranges, highlighted in the side inset, and an additional peak at even lower photoelectron
energy. Figure excerpted from Ref. 164.

Upon its discovery, this peak was dubbed a Zero-Energy Structure (ZES), since the
centre of the peak is consistent with zero to within the available experimental precision
both at the time of its discovery [164] and to date. However, as we shall see below, there

Fig. 6.4 © IOP Publishing. Reproduced with permission. All rights reserved.
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is reason to suspect that the centre may not be at zero but only close to it, so a much
better name for the structure is Near-Zero-Energy Structure (NZES), which we will use
throughout and as a synonym for ZES, and which better reflects the fact that in physics
it is rather rare to have values exactly at zero instead of merely consistent with it.

The angle-resolved photoelectron spectra of Refs. [163] and [164], as well as later
publications, have several interesting features worth emphasizing. The first is the relatively
trivial observation that, because of the volume element of the cylindrical coordinates being
employed, it is naturally harder for electrons to fall exactly on-axis (at p⊥ = 0) and on
the volume element around it, which explains the detection probability on the lower part
of Fig. 6.4. This effect is also responsible for making the NZES form as a distinct spot
separate from the axis, even though the structure is consistent with having its centre at the
origin of the momentum plane; it also makes the high detection counts at the NZES spot,
and above it, all the more remarkably high, particularly when compared to similar p⊥
at higher p‖.

The second important feature is that, in experiments performed in Reaction Micro-
scope detector configuration, the VLES peak which would be expected at the 100 meV
range essentially vanishes. This is due to the fact that the previous observations were
performed using time-of-flight (TOF) electron spectrometers [161, 162], which have a very
narrow acceptance cone of about 6° centred on the laser polarization, and this leaves out a
large fraction of the produced photoelectrons and the features in their distribution. This
acceptance cone is shown as a dashed white line in Fig. 6.4, and the electrons shown in
Figs. 6.2 and 6.3 all originate below the dashed line. On the other hand, if the full three-
dimensional data is post-selected to only the electrons within that acceptance angle, the
VLES peaks reappear [164, p. 5]. This means, then, that the VLES as originally reported
are not quite an experimental artefact, but the initial detections are certainly only a very
partial look at much richer structures.

Finally, it is important to remark that the upper limit of the electron spectrum at
around p⊥ ≈ 0.3 a.u. is an artefact of the detection apparatus, which is configured for
low-energy electrons at high resolution, and therefore leaves out higher momenta.

The first of these features also points out an important aspect of the photoelectron
spectra in the low-energy region, which is the fact that the transverse momentum dis-
tribution will vary wildly for different longitudinal momenta. Indeed, the experimental
transverse distributions, shown in Fig. 6.5, show large differences in photoelectron spectra
taken over broad p‖ ranges and the slice at |p‖| < 0.02 a.u., where the NZES congregates.
In this view, the NZES is clearly visible as a spike of width ∆p⊥ ≈ 0.05 a.u. (though this
also includes some electrons from the V-like structure of the VLES).

Since the original detection of the NZES, several improvements in the measurement
stability and resolution have enabled better characterizations of the photoelectron distri-
bution structures over momentum space [166]. This includes a series of additional LES
peaks, each with a distinct structure at relatively constant transverse momentum, and
with progressively smaller longitudinal position, as shown in Fig. 6.6 and subsequently
refined [167] as shown in Fig. 6.7. These features were indeed expected, as we shall show
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below, coming from different members of a family of trajectories.

Figure 6.5: Transverse photoelectron momentum distributions at different longitudinal
momentum for the data displayed in Fig. 6.4. Integrating over a broad p‖ range yields a
cusp with a smooth drop-off, whereas a smaller range around zero longitudinal momentum
brings out a sharp peak at the origin coming out of a gaussian background. Figure excerpted
from Ref. 164.

Figure 6.6: Measured momentum maps for the ionization of argon in a 3.1 µm 6.5-cycle
pulse at 9× 1013 W/cm2 [166], showing the V-shaped VLES and the NZES peak, as well
as two distinct LES structures, in both linear (left) and logarithmic (right) transverse
momentum scales. Most of the features are reasonably well reproduced by a classical
trajectory Monte Carlo simulation (bottom row). Figure excerpted from Ref. 166.

As of this writing, the measurements in Ref. 167, as showcased for example in Fig. 6.7,
essentially represent the state of the art in the experimental observations of the low-energy

Fig. 6.5 © IOP Publishing. Reproduced with permission. All rights reserved.
Fig. 6.6 reprinted with permission from B. Wolter et al., Phys. Rev. A 90, 036424 (2014). © 2014 by the

American Physical Society.
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region of above-threshold ionization in mid-IR fields. In particular, there is clear evidence
of multiple LES features, well-resolved V-shape VLES structures, and strong NZES peaks,
though the information on the latter is limited mostly to only its presence.

Figure 6.7: Momentum map (a) for the ionization of xenon in a 3.1 µm pulse of intensity
4× 1013 W/cm2 [167], showing clear LES but slightly muddled VLES V-shape and NZES
peak. Line-outs at several different transverse momenta p⊥ produce longitudinal profiles
with distinct LES peaks shown inside dashed circles in (b). The gray region in (b) is a
rough approximation of the features excluded by the TOF acceptance cone, shown as the
white dashed line in (a) as in Fig. 6.4. The data have been symmetrized about p‖ = 0.
Figure excerpted from Ref. 167.

6.1.2 Theoretical explanations for low-energy structures

In terms of the available theoretical explanations for the structures in the low-energy region
of mid-IR strong-field ionization, the field is rather more varied and offers a less linear story.
There is a general consensus that the LES is caused by the Coulomb potential acting on the
mostly classical motion of the electron, and specifically centred on soft recollisions. On the
other hand, there are several alternative mechanisms to go from this class of trajectories
to peaks in the photoelectron spectrum.

As we saw earlier, from its initial detection the LES was reproducible from within
TDSE simulations [157, 160], and this has been carried forward with TDSE calculations
showing the VLES, in their original sense as a single peak under a constrained acceptance
angle [162]. In addition to this there have been some attempts at further exploration
of the low-energy region within the TDSE [168, 169], but generally the consensus is that
those features, and most markedly the LES, are well explained by the TDSE and therefore
captured completely by the single-atom Schrödinger equation. Unfortunately, this yields
relatively little insight on the origin of the structures, and most of the effort has been
directed at building simplified models that explain the structures.

These efforts largely fall along three lines of inquiry. On the classical side, one can
study the global properties of the classical propagation map, and one can also use statistical
Monte Carlo methods to predict photoelectron spectra. On a more explicitly quantum side,
there is the Coulomb-Corrected SFA (CCSFA), which we discussed in the Introduction
and in chapter 5, and which embeds the classical trajectory dynamics directly within the

Fig. 6.7 reused under its CC BY licence, from B. Wolter et al., Phys. Rev. X 5, 021034 (2015).
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quantum SFA framework. Finally, a class of methods known as Improved SFA (ISFA),
include a single term of interaction with the core in a Born series and then perform an
expanded SFA treatment. This varied set of methods generally agrees on the causes for the
LES, in terms of the classes trajectories involved, but they provide multiple interpretations
for how those trajectories translate into peaks in photoelectron spectra.

One prominent feature of this set of explanations is that much of the structure that is
present can be explained rather well using only classical trajectories, building on electron
populations that are built up throughout the laser cycle as ionization bursts given by the
quasi-static ADK tunnelling probability. This is known as the Classical Trajectory Monte
Carlo (CTMC) method: a large number of electron trajectories are randomly generated,
weighed by the ADK rate, and they are then propagated until the end of the pulse using
the newtonian equation of motion in the laser field plus the (effective) ionic potential.
In essence, the Schrödinger dynamics of the photoelectron are replaced by Liouvillian
statistical mechanics with an ADK source term.

This approach is able to reproduce the LES and VLES peaks [170–173] and, moreover,
it is able to dissect those structures by selecting the electrons that do end up inside the
relevant structures and exploring their characteristics in terms of ionization time [162, 172],
angular momentum [169, 173], and overall shape [169, 174], a level of access into the
internal details of the components of a simulation that is denied to TDSE calculations.

Figure 6.8: Photoelectron momenta for argon ionized by a 1014 W/cm2 laser at 3.1 µm,
as obtained via CTMC simulations using (a) no Coulomb potential, (b) the full Coulomb
interaction, and (c) Coulomb interactions with a trajectory interference term, as compared
to the experimental data from Ref. 163 shown in (d). The results can be divided into zones
and explored with the Coulomb interaction turned on and off, as shown for the different
zones of (d) over longitudinal momentum (e-h) and kinetic energy (i-l). Figure excerpted
from Ref. 174.

Further, CTMC simulations can also reproduce much of the V-shaped VLES and a
NZES-like peak in the photoelectron momentum spectrum [174], shown in Fig. 6.8(b), and
remarkably close to the equivalent experimental result from Ref. 163 shown in Fig. 6.8(d).
In addition to this, CTMC results have conclusively shown that the Coulomb field of

Fig. 6.8 adapted (labels (e-l) shifted for clarity), under its CC BY licence, from Q.Z. Xia et al., Sci.
Rep. 5, 11473 (2015).
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the remaining ion is essential to the emergence of LES and related structures [172, 174],
as shown for example in Fig. 6.8(a): here the ionic potential is completely ignored after
the ADK tunnelling stage, completely eliminating the features of Fig. 6.8(b). (Similar
differences are exhibited in Fig. 6.8(e)-(l).)

In addition to the statistical look provided by the CTMC method, the classical mechan-
ics of post-tunnelling electrons can also provide deeper, structural looks at what causes
the LES peaks, by examining the dynamical maps of the newtonian evolution, from the
conditions after ionization to the electron momenta after several laser periods [175, 176].
Under this lens, the LES peak is caused by dynamical focusing: the bunching together of
electrons that come from a wide array of initial conditions into a relatively small interval,
as shown in Fig. 6.9.

Figure 6.9: Dynamical maps for a classical electron released into a monochromatic field
A′ = A0 sin(ωt) under the influence of a Coulomb potential [175]. The electron is released
with ADK rates at a time t′, indexed by the vector potential A′ at ionization, with initial
transverse momentum p′ρ and zero transverse velocity. The colour scale shows the electron
longitudinal momentum pz as a function of the initial conditions at one (a), two (b) and
three (c) laser periods after ionization. The ‘fingers’ in (b) and (c) represent depletion
caused by a soft recollision, and this is accompanied by peaks in the spectrum (d) caused
by dynamical focusing: the crossed, looping contours around the saddle points of pz(p′ρ, A′),
where the electrons congregate. Figure excerpted from Ref. 175.

This occurs at momenta close to (but not exactly at) the soft-recollision momenta, for
which the electron returns to the core, r(tr) ≈ 0, for a close interaction with the ion, and
moreover it does so with a very low velocity, v(tr) ≈ 0, as shown in Fig. 6.10. For the
full classical trajectories, the soft recollision itself is often ‘burned’ out of the spectrum
and sent to radically different momenta, shown as the ‘fingers’ of Figs. 6.9(b) and (c), but
the strong effect on the momentum-momentum mapping causes spots nearby to fold a flat
initial distribution into a peak at the zeroes of the derivative of the mapping.

Moreover, once this cause is recognized, it is easy to see that the soft recollisions of
Fig. 6.10 come in multiple types. The principal trajectory type, which causes the main
LES peak, has a soft recollision at one and a half periods after it is ionized: it swings
past the ion once (at a velocity too high to be meaningfully deflected) and then has a
soft recollision on the turning point of its next backwards swing, as shown by the green
curve of Fig. 6.10.

It is possible, however, for trajectories to have a soft recollision later on in the cycle, like

Fig. 6.9 reprinted with permission from A. Kästner et al., Phys. Rev. Lett. 108, 033201 (2012). © 2012
by the American Physical Society.
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Figure 6.10: Soft recollisions are trajectories where the electron returns to the vicinity of
its parent ion with very small velocity, near a turning point. This can be after a single pass
(green curve) or after two (purple curve) or more passes, forming a family of trajectories
at different final momenta. Figure excerpted from Ref. 176.

the purple, dashed curve, which spends two periods oscillating at relatively large distances
from the origin (and, again, passing the ion too quickly to get too deflected), and having
a soft recollision on its second backwards turning point. This then generates a series of
trajectories starting with the LES peak and going to lower and lower momentum (which
we will explore in more depth in section 6.3), causing the series of peaks seen in Fig. 6.9(d);
these predicted peaks do appear in experimental spectra [166, 167], as discussed above,
and they are visible in the experimental results shown in Figs. 6.6 and 6.7.

Going some way beyond this analysis, the dynamical map of the full Coulomb-plus-
laser trajectories, i.e. the mapping from the momentum at ionization to the momentum
after one laser period and beyond, is a rather complicated quantity [cf. 155, Fig. 7], but if
examined in detail it can show some very interesting regularities, shown in Fig. 6.11.

Figure 6.11: Dynamical map of electrons ionized from argon by a 1.5× 1014 W/cm2 field
at 2 µm, taking a regular grid in momentum space to a complicated shape [177]. The
decrease in width compared to the non-Coulomb case (black rectangle) showcases the
known Coulomb focusing, but near the soft recollision at px ≈ 0.61 a.u. the trajectories
are sent to an opposite transverse momentum py, forming the caustic shown in (b), which
then accumulates electrons to form an LES peak in the photoelectron spectrum. Figure
excerpted from Ref. 177.

Fig. 6.10 © IOP Publishing. Reproduced with permission. All rights reserved.
Fig. 6.11 reprinted with permission from S. A. Kelvich et al., Phys. Rev. A 93, 033411 (2016). © 2016

by the American Physical Society.
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It is quite clear, from the detailed mapping, that some regions exhibit chaotic dynam-
ics [178] (which show up as the burned-out hole near the origin, where the electrons are
scattered away), but there are also large regions of regularity. For instance, the main LES
is clearly visible as the result of a caustic induced by the Coulomb potential, shown in
Fig. 6.11(b), which then causes the electron bunching at those energies.

These results, then, show that classical trajectories capture much of the dynamics of
the LES, but in the end the ionization process is quantum mechanical, and it is worthwhile
to look for methods that explicitly include the quantum mechanical aspects of the problem.
This is, essentially, the Coulomb-corrected SFA (CCFSA) approach which we discussed in
section 5.1, and which was developed in Refs. 57 and 58 for use in problems like sub-barrier
Coulomb effects in tunnel ionization [179], which it can do quite successfully within the
conceptual constraints we detailed in section 5.1.

When applied to the LES, the CCSFA method produces angular distributions some-
what different to the ones obtained by classical-trajectory CTMC methods [180], but it
does provide a good match to the TDSE distributions, as shown in Fig. 6.12, which in
principle describes the microscopic response better, prior to the washing out of interfer-
ence fringes by focal averaging effects. As such, the CCSFA results form a useful bridge,
connecting the full Schrödinger equation on one side with the classical understanding in
terms of soft recollisions on the other.

Figure 6.12: Photoelectron momentum distributions from argon ionized by a 2 µm field at
1012 W/cm2 [180], via standard SFA (a), a full TDSE simulation (c), and a CCSFA (here
named TC-SFA) calculation (b). The CCSFA result provides a good match to the full
TDSE, while still providing an intuitive trajectory picture. Specifically, the ‘cut’ at the
LES range in (b) can be directly associated with a caustic, coming from trajectory type
III as per (e), where the electron approaches the ion at low speed, changing the sign of its
transverse momentum. Figure excerpted from Ref. 180.

In addition to this, it is also possible to do an even deeper quantum approach, by aug-
menting the normal SFA with a single formal quantum scattering on the ionic potential.

Fig. 6.12 reprinted with permission from T.-M. Yan et al., Phys. Rev. Lett. 105, 253002 (2010). © 2010
by the American Physical Society. Labels (d, e) shifted for clarity.
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This approach, known as the Improved SFA (ISFA), builds a Born series in the Coulomb
potential in much the same way that we performed a perturbative expansion with respect
to the electron correlation interaction potential V m

ee in chapter 2. It was originally de-
veloped to deal with a large plateau of high-energy electrons (between 2Up and 10Up) in
above-threshold ionization [52, 181], and it has been very successful there, but it can also
be applied to forward scattering at low velocities.

In the LES context, then, the ISFA method can describe the LES peaks [154, 155, 182–
184], which appear as a result of forward scattering with the Coulomb core at low energies.
This had originally been neglected, because the direct pathway (without rescattering) was
deemed dominant at low energies, but the large Coulomb scattering cross section in the
forward direction makes up for the difference.

Moreover, the forward scattering within ISFA can also be used to explain the V-shaped
VLES [182, 185], where it shows as the confluence of the locus of several types of forward-
scattered quantum orbits, as shown in Fig. 6.13, with the predicted spectrum providing a
good match to the experimental observations of Fig. 6.6.

Figure 6.13: Emergence of the VLES V-shape from forward-scattered quantum orbits
within the ISFA formalism [185]. Here multiple quantum orbits (with different starting
times, indexed by β, µ and m) form contributions with different loci, which are essentially
universal up to the field momentum scale A0 = F/ω. The intersection of the circular loci
at the origin then gives rise to the V shape, as shown in the predicted spectrum (b) for
argon in a 3.1 µm field at 9× 1013 W/cm2 as in Ref. 166. Figure excerpted from Ref. 185.

Finally, in complement to the above methods there is also a smattering of alternative
views on the generation of the LES and VLES, most of which are variations on the aug-
mented SFA idea [186–188], but generally they add mostly supplementary insights to the
ones discussed above.

On the other hand, the ISFA analysis does also point to an awkward feature: since it
is based only on pure laser-driven trajectories, most of its features can be boiled down to
just classical trajectories that completely ignore the Coulomb field. Because of this, it is
in fact possible to model the LES and the VLES V shape using only the so-called simple-
man’s model, augmented with only a single act of rescattering on a point nucleus [189],

Fig. 6.13 © IOP Publishing. Reproduced with permission. All rights reserved.



146 Electron dynamics in complex space and complex time

and this sends the electrons on curves essentially identical to those shown in Fig. 6.13(a),
with rather similar predictions for experimental spectra.

Ultimately, though, the rough consensus emanating from these approaches is that the
LES and VLES are essentially already present at the level of the simple-man’s model –
the dynamics of a tunnel-ionized electron driven only by the laser field – but that they
do require the action of the Coulomb field of the ion to appear in a significant way [155].
However, the mechanism of this action – trajectory bunching in CTMC analyses, forward-
scattering amplitudes within ISFA, trajectory interference at caustics inside CCSFA – is
still susceptible to multiple interpretations.

As a final note on the theoretical understanding of the LES, it is important to mention
one of the main tools used to track it, identify it, and diagnose its origin: the structure’s
scaling with respect to the laser’s wavelength and intensity and the ionization potential
of the target species. This is usually measured in terms of the high-energy edge of the
feature EH (as defined in Fig. 6.1) and scaling measurements were reported in the original
detection by Blaga et al. [157], as shown in Fig. 6.14, as well as in later calculations [169,
170, 188, 190].

Figure 6.14: Scaling of the upper edge energy EH of the LES structure as measured by
Blaga et al. [157] for multiple target species and wavelengths, over varying intensities. The
scaling is essentially universal, varying with the Keldysh parameter as EH ∝ γ−2. Figure
excerpted from Ref. 157.

Generally speaking, the LES edge is quite reliably found to scale with the Keldysh
parameter as EH ∝ γ−2, though this can mostly be refined further to EH ∝ Up, with a
proportionality constant close to 1/10. This scaling essentially arises from the classical
dynamics of the soft recollision within the simple man’s model, and we will return to it in
section 6.3.

6.1.3 Theoretical explanations for near-zero energy structures

As we have seen, the theoretical aspects of the LES and the VLES are relatively well
understood, with a strong consensus on the fundamental roles of soft recollisions and the

Fig. 6.14 reprinted by permission from Macmillan Publishers Ltd: Nature Phys. 5, p. 335 © 2009.
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Coulomb field in their generation. On the other hand, the NZES is rather more recent
and there is less work on the mechanisms behind it. Below, in sections 6.2 and 6.3, we will
propose a mechanism for the NZES based on an extension of the soft-recollision arguments
above. At present, however, the only explanation that has been advanced relates to the
role of the constant electric extraction field of the reaction microscope acting on highly
excited states left over from the laser pulse [166, 191] goes here.

It has been known for some time that if an atom is ionized by a strong laser pulse in the
tunnelling regime, some fraction of the electron population taken out of the ground state
is left in high-lying Rydberg states [192–194], a process known as frustrated tunnelling,
though relatively little is known about these states and their energy, angular momentum,
and coherence characteristics. In the experiments where the NZES was observed [163, 166],
these leftover Rydberg states were also left under the action of the macroscopic electric and
magnetic fields, on the order of ∼1 V/cm and ∼10−4 T, used by the reaction microscope
to guide the electrons to the detector [165].

In principle, then, the electric extraction field, weak as it is on the atomic scale
(i.e. 1 V/cm ≈ 2× 10−10 a.u.), can still liberate these electrons either by over-the-barrier
ionization, for whatever population is left above the shallow barrier caused by the extrac-
tion field, or through tunnel ionization for states just below that. Indeed, there is some
evidence that some electrons can be liberated in this way, from TDSE and CTMC simu-
lations performed in the presence of such an extraction field [166, 191], though these are
challenging due to the long length scales involved, and – in the case of TDSE simulations –
only a limited number of Rydberg states can be taken into account.

Nevertheless, the structure does appear in CTMC simulations with the extraction field,
as shown in Fig. 6.15, and it shows some agreement with experiment. Moreover, CTMC
calculations agree with experiment on the width of the VLES V shape as the length of
the laser pulse changes, with the scaling shown in Fig. 6.16.

In addition to this, the extraction-field mechanism requires that the characteristics of
the NZES peak change as the strength of the extraction field changes. This is a hard
prediction to explore experimentally, because the extraction field is also a crucial variable
both in how many electrons are detected as well as in fixing the final resolution of the
detector (i.e. the level of zoom into the photoelectron momentum distribution), so varia-
tions there have a strong effect on the rest of the experiment, but there are indeed some
hints of variation in the width of the structure in experiment, as shown in Fig. 6.17.

Moreover, there is also some agreement between the observed experimental variations
and a simplified semiclassical theory which considers classical electrons, uniformly dis-
tributed in Rydberg states just below the ionization threshold, in a single rescaled Coulomb
potential plus the extraction field [191].

On the other hand, the extraction-field mechanism would also require the yield of the
structure – the number of electrons in the NZES – to change with the extraction field,
since if the pulse parameters don’t vary then the Rydberg population will not change ap-
preciably, and a stronger extraction field will lower the shallow barrier and thereby liberate
a larger population of electrons. (Even further, the Rydberg population is expected to be
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roughly uniformly distributed over energy just below threshold, so the NZES yield should
scale roughly linearly with the extraction field over its ∼tenfold variation in Ref. 191.)
However, this is rather difficult to test experimentally, since changing the extraction field
has a strong effect on the entire detection, and there is at present no evidence for this
dependence, which represents the clearest way forward in validating this mechanism as a
contributor to the NZES.

6.2 Soft recollisions in Analytical R-Matrix theory

Having seen the current understanding of the LES in the literature, we now turn to what
our ARM theory of photoionization can tell us about soft recollisions and their role in
photoelectron spectra.

As we have seen, the ARM formalism works with a different set of trajectories to
the ones mentioned above, since it does not use the full Coulomb-laser trajectory used
by full classical CTMC theories and by the semiclassical CCSFA, nor does it use the
real-valued simple-man’s trajectories with only the laser driving as in Ref. 189. In those
real-time theories, the soft recollision shows up topologically as a topological change in
the trajectory, as shown in Fig. 5.8(a), and the number of extrema of rcl(t)2 along the
path: from a single inwards turning point, to an outwards turning point flanked by two
closest-approach times, as shown in Fig. 5.9(a).

The ARM trajectories, on the other hand, are different, because the trajectory path

Figure 6.15: Ionization of argon in a 3.1 µm pulse at 9× 1013 W/cm2 at varying pulse
lengths [166], providing a zoom to the low-energy region of Fig. 6.6(b), and its comparison
with an equivalent CTMC simulation with the extraction field accounted for. The NZES
structure also appears in the CTMC simulation, which agrees with experiment on the
narrowing of the VLES V shape. Figure excerpted from Ref. 166.

Fig. 6.15 reprinted with permission from B. Wolter et al., Phys. Rev. A 90, 063424 (2016). © 2016 by
the American Physical Society.

http://dx.doi.org/10.1103/PhysRevA.90.063424
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Figure 6.16: Variation of the width of the VLES V shape in Fig. 6.15 with respect to
variations in the pulse length, showing good agreement between CTMC simulations and
experiment. Figure excerpted from Ref. 166.

through the complex time plane is no longer constrained to lie on the real axis, which means
that the closest-approach solutions are not lost – they simply go off into the complex plane,
where they can still be reached by the integration path over the complex time plane if
there is a strong enough reason (such as avoiding Coulomb branch cuts) to do so. The last
time we considered the soft recollisions in this context, then, was as a complex interaction
between pairs of branch cuts, depicted in Fig. 5.12, at which two pairs meet and recombine,
changing the branch cut topology that the integration path needs to navigate.

Moreover, although we showed in Fig. 5.12 a single example at a return time of ωt ≈ 2π,
this behaviour reoccurs every half period thereafter, as is clear from the quantum tCA

surface we saw in Fig. 5.10. Here, for clarity, we revisit Fig. 5.12, showing in Fig. 6.18 the
change in the branch cut topology of

√
rL(t)2 for the first soft recollision, at ωt ≈ 2π and

a very low momentum, and the second one at ωt ≈ 3π and a slightly higher momentum.
As we saw in chapter 5, these soft recollisions are the hardest point for the branch cut

Figure 6.17: Momentum width Π∗ of the NZES in ionization of N2 in a 780 nm pulse, sub-
sequently ionized by extraction fields of different strengths, showing some variation in the
width of the feature with the extraction field strength. The red curve shows the predicted
width of extraction from a rescaled Coulomb potential. Figure excerpted from Ref. 191.

Fig. 6.16 reprinted with permission from B. Wolter et al., Phys. Rev. A 90, 063424 (2016). © 2016 by
the American Physical Society.
Fig. 6.17 reprinted with permission from E. Diesen et al., Phys. Rev. Lett. 116, 143006 (2016). © 2016

by the American Physical Society.

http://dx.doi.org/10.1103/PhysRevA.90.063424
http://dx.doi.org/10.1103/PhysRevLett.116.143006
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Figure 6.18: Change in the branch cut topology, as in Fig. 5.12, for the first two soft
recollisions. Note that the order of the transition (open to closed, and vice versa) is
reversed with respect to increasing pz.

navigation, since they provide the closest gates with a very sensitive dependence on the
problem’s parameters. This is emphasized by the very small momentum changes between
the left and right columns of Fig. 6.18, which mark the change in topology, and therefore
the switch in the choice of closest-approach times the integration path needs to go through.

In addition to this, however, the soft recollisions also have a strong effect on the
ionization amplitude, because these drastic changes in the integrand occur precisely when
it is at its largest. Thus, choosing the wrong contour in this region accounts for the
largest contributions to the integrand, with a correspondingly large effect on the integral,
so correctly navigating the cuts here is even more crucial.

More surprisingly, however, once the contour is forced to pass through the ‘gate’ tCAs,
for pz just on the ‘closed-gate’ topology side of psr

z , the contributions of those saddles have
the effect of suppressing the ionization amplitude there.

To see how this comes about, consider the integral
∫
U(rcl(t))dt for the configuration

of Fig. 6.18(a). Here
√

rcl(t)2 has a minimum at the central saddle point, t (2)
CA , and this

translates into a maximum of 1/
√

rcl(t)2 which dominates the integral. At this point, the



6. Low-Energy Structures and Near-Zero Energy Structures 151

approach distance
r∗ =

√
rcl(t (2)

CA )2 (6.1)

is dominated by a modest and positive imaginary part. This means that

U∗ = −1/r∗ (6.2)

is large and (positive) imaginary, and therefore the correction factor e−i
∫
Udt has a large

amplitude.
On the other hand, in the configuration of Fig. 6.18(b) the integral is dominated by

the ‘gate’ closest-approach times, for which

r′∗ =
√

rcl(t (1)
CA )2 ≈

√
rcl(t (1)

CA )2 (6.3)

is mostly real and much smaller than r∗. The corresponding potential U ′∗ = −1/r′∗ is then
large, real and negative, and −iU ′∗ is along +i. However, here the line element dt must
slope upwards with a positive imaginary part to emphasize the contribution of the saddle
point, and this then gives −i

∫
U(rcl(t))dt a large and negative real part. This, in turn,

suppresses the amplitude of the correction factor e−i
∫
Udt.

This effect is then visible in the photoelectron spectrum as a large peak just below
the soft recollision, followed by a deep, narrow dip, which we show in Fig. 6.19. In an
experimental setting, the dip will almost certainly get washed out by nearby contributions
unless specific steps are taken to prevent this, but the peak will remain. (In addition,
this effect mirrors the redistribution of population seen in classical-trajectory-based ap-
proaches, where the peaks caused by dynamical focusing represent trajectories taken from
other asymptotic momenta, whose amplitude is therefore reduced.)

Here the peak in Fig. 6.19 should be compared with the experimental transverse spectra
we showed earlier in Fig. 6.5, which also displayed a sharp spike rising out of a gaussian
background for very small longitudinal momentum. Here the spike is not as sharp (it is
shown in linear scale instead of logarithmic scale) but given the approximations in ARM
theory it is only expected to produce qualitative agreement, which is indeed very striking.

For this specific case, the momentum scales involved are really very low: here there are
two closely spaced transitions at psr

z = 0.024 a.u. and psr
z = 0.012 a.u. (with some interplay

between them showing up), and this is roughly at the state of the art of momentum
resolution, ∆p ∼ 0.02 a.u., claimed by recent experiments [164, 167]; in terms of energy, it
corresponds to a photoelectron energy of about 8 meV. Thus, the ARM peak has a finite
width, but this is too small to be resolved at present and structures at this range would
show up simply as consistent with zero.

The peak in Fig. 6.19 is clearly similar to the NZES structure, as experimentally
observed, so it calls for further exploration. Since it is directly associated with the soft
recollisions of the previous chapter, we have a clear indication of the possible mechanism
for the structure, and we will examine the connection further in the next section.

Finally, it is worth noting that a more recent CCSFA analysis of ATI [55], using
a complex tunnel exit as in ARM theory (and thereby restricted to only a laser-driven
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Figure 6.19: Emergence of the Near-Zero Energy Structures within the Analytical R-Matrix
theory: incoherent addition of the sub-cycle ionization yields for two adjacent half-cycles,
1
2
(
|a(px, 0, pz)|2 + |a(px, 0,−pz)|2

)
, as predicted by the ARM amplitude. We ignore the

shape factor R(p), and consider for the ionization of unaligned molecular nitrogen by a
3.1 µm field at 1014 W/cm2, with γ = 0.31, as per the parameters of Ref. 164 whose exper-
imental data is shown in Figs. 6.4 and 6.5. The Coulomb-correction has been integrated
over 2.75 laser periods.

trajectory), and relying on the branch-cut navigation algorithm we developed in chapter 6,
confirms our findings of LES peaks in this energy region.

6.3 Classical soft-recollision trajectories

We have seen, then, that our ARM theory of photoionization predicts a sharp peak at
very low electron energies, and we know the class of trajectories – soft recollisions – that
underpin it. Moreover, we have been forced by our integration-path selection algorithm
to grapple with soft recollisions every half cycle, with the complex topological changes
depicted in Fig. 6.18 occurring at ωt ≈ 2π, 3π, 4π, . . ., giving a distinct series of trajectories
and therefore a distinct series of LES structures, some of which we have already covered.

However, these trajectories come in two distinct flavours, as depicted in Fig. 6.20: one
class (shown in dashed red) with the soft recollision on a ‘backwards’ turning point, at
ωt ≈ 3π, 5π, 7π, . . ., and a second class with the soft recollision on the ‘forwards’ turning
points, at ωt ≈ 2π, 4π, 6π, . . ., shown in solid blue.

The first class we have already met, in Fig. 6.10 and first described in Refs. 175 and
176, but the second class has received very little attention in the literature, essentially
because most analyses of the soft recollisions as a marker for the LES peaks have used
models where the electron trajectory starts at the origin [155]. At first blush, ignoring the
tunnel exit zexit ∼ Ip/F is relatively safe, since at the wavelengths of interest the quiver
amplitude zquiv = F/ω2 is much larger, as shown in Fig. 6.20. However, for the second
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Figure 6.20: Trajectories with soft recollisions after tunnel ionization, for a Keldysh pa-
rameter of γ = 0.75.

class of trajectories, if one ignores the tunnel exit then the whole series collapses into a
single trajectory at zero momentum, thereby washing out all the dynamics. However, any
reasonable theory of optical tunnelling should place the electrons at the tunnel exit, and
doing this unfolds the second series into distinct trajectories.

Moreover, it is quite possible to describe the trajectories shown in Fig. 6.10 within
the quasi-classical formalism that simply looks for real-valued trajectories on real times,
and this will help us better understand their characteristics. We retake, then the classical
trajectories

rcl(t) = Re
(∫ t

ts
[p + A(τ)] dτ

)
(5.13)

from section 5.4.1, as our classical trajectories. Within these trajectories, we define the
soft recollisions as those real times tr for which both the velocity and the real part of the
trajectory vanish, so that

zcl(tr) = Re
[∫ tr

ts
(pz +A(τ)) dτ

]
= 0

vz(tr) = pz +A(tr) = 0.

(6.4a)

(6.4b)

Putting in explicit values for the vector potential and its integral, this can then be
re-expressed as 

zexit + pz(tr − t0) + F

ω2 (cos(ωtr)− cos(ωt0)) = 0

pz −
F

ω
sin(ωtr) = 0,

(6.5a)

(6.5b)

where

zexit = Re
[∫ t0

ts
(p+A(τ)) dτ

]
= F

ω2 cos(ωt0) (1− cosh(ωτT)) (6.6)

models the tunnel exit, and reduces to the standard zexit ≈ −Ip/F in the tunnelling limit
where γ � 1.
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This system of equations, (6.5), can be solved numerically rather easily, but it is more
instructive to consider its linearized version with respect to pz, since all the soft recollisions
happen at small energies with respect to Up. To do this, we express the starting time as

t0 + iτT = ts = 1
ω

arcsin
(
ω

F
(pz + iκ)

)
≈ pz
F

1√
1 + γ2 + i

ω
arcsinh (γ) , (6.7)

where γ = ωκ/F is the Keldysh parameter as usual, so that zexit ≈ − F
ω2

(√
1 + γ2 − 1

)
.

The linearized system now reads
pztr + F

ω2

(
cos(ωtr)−

√
1 + γ2

)
= 0

pz −
F

ω
sin(ωtr) = 0,

(6.8a)

(6.8b)

and to obtain a solution we must linearize tr with respect to pz. It is clear from Fig. 6.20,
and from the numerical solutions of (6.5), that the solutions occur close to each (n+ 1)π
for n = 1, 2, 3, . . ., so it is justified to write

ωtr = (n+ 1)π + ω δtr, (6.9)

where we expect δtr to be small.
Putting this in we obtain from (6.8b) that δtr ≈ (−1)n+1pz/F and cos(ωtr) ≈ (−1)n+1,

and this gives in turn the drift momentum of the successive soft-recolliding trajectories as

psr
z ≈

F

ω

√
1 + γ2 + (−1)n

(n+ 1)π . (6.10)

These are shown in Fig. 6.21 , and they are generally a good approximation to the exact
solutions of (6.5), shown dotted.

Figure 6.21: Scaling of the normalized soft-recollision momentum ωpz/F as a function of
the Keldysh parameter γ for the first six soft-recollision trajectories. Dots show the exact
solutions of (6.4) and lines show the linearized result (6.10).

Here it is quite clear that the trajectories with even n – our new series, shown solid
blue in Fig. 6.20 – will scale very differently than the previously known series, which has
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odd n and was shown in dotted red in Fig. 6.20. This scaling, in fact, holds the key to the
physical differences between the two classes of trajectories, so it is worth spending some
time teasing out its roots and implications.

• Starting with the even-n trajectories, we can further simplify the momentum to

psr
z ≈

F

ω

√
1 + γ2 + 1
(n+ 1)π , (6.11)

which for low γ simplifies to

psr
z ≈

F

ω

2 + 1
2γ

2

(n+ 1)π = F

ω

2
(n+ 1)π ≈ 2 F

ω2
ω

(n+ 1)π . (6.12)

This last form holds most of the physical content for the scaling, because it sep-
arates into twice the quiver radius, 2zquiv = 2F/ω2, split over the time between
the ionization and the recollision, (n + 1)π/ω, and this is clearly the distance that
the oscillation centroid of the even-n trajectories needs to cover in Fig. 6.20 for the
backwards turning points to pass through the origin.

Moreover, this scaling now gives us a direct line on the behaviour of the LES, because
it can be directly translated into an estimate of the signature kinetic energy of the
structure,

1
2 (psr

z )2 ≈ F 2

ω2
2

(n+ 1)2π2 = 8
(n+ 1)2π2Up, (6.13)

where the psr
z ∼ F/ω momentum scaling translates directly into an energy that

scales directly with the ponderomotive potential Up. Further, the numerical con-
stant evaluates to roughly 1

10 . The linearity with respect to Up, together with the
numerical constant, matches the known scaling of the LES, as discussed at the end
of section 6.1.2.

• Turning to the odd-n trajectories, the cos(ωtr) ≈ (−1)n factor is now odd – we are
on a forwards swing of the orbit – and this means that the momentum will behave
differently, since now

psr
z ≈

F

ω

√
1 + γ2 − 1
(n+ 1)π ≈ F

ω

γ2

2(n+ 1)π ≈
γκ

2(n+ 1)π ≈
ω

F

κ2/2
(n+ 1)π . (6.14)

This scaling is somewhat more complicated, and it is in fact one of the central results
of this work; simple as it is, it seems to have avoided description so far.

To begin with, the form psr
z ∼ γκ, obtained by trading in one factor of γ = κω/F ,

implies that the high-energy edge of this NZES structure will scale as γ2 for a fixed
target species, and this marks a straight departure from the LES scaling, which
goes as γ−2.

Finally, the last form of the soft-recollision momentum psr
z in (6.14) tells the rest of
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the tale, since it can be cleanly reorganized as

psr
z ≈

zexit
∆t = Ip/F

(n+ 1)π/ω ∝
Ipω

F
, (6.15)

giving the distance to be covered – the tunnel width, zexit ≈ Ip/F , over the time
∆t = (n+ 1)π/ω between ionization and recollision.

This last form also marks in a clean way the real difference in scalings between the
usual even-n trajectories and our odd-n ones, because when translated into energy it reads

1
2 (psr

z )2 ∼
I2
p

Up
∼ Ipγ2, (6.16)

that is, for a fixed target species the high-energy edge of this structure should be expected
to scale inversely with respect to the ponderomotive potential Up, which is completely
opposite to the usual behaviour of the LES series.

In addition to this, the energy scaling in (6.16) is also immensely valuable in that
it directly suggests the experimental avenues that will help resolve the contribution of
our odd-n trajectory series to the observed NZES experimental feature. As we argued
earlier, the NZES has so far only been observed to be at energies consistent with zero to
the experimental accuracy, and any tools that can help lift this feature to higher energies
where the detectors – already at their state-of-the-art resolution – can resolve them better
will be a valuable avenue for exploration.

In particular, for the tunnelling mechanism to hold well we require that the Keldysh
parameter γ be small, which therefore means that if we want the energy in (6.16) to be
large this can only be done by going to harder targets with a higher ionization potential;
this would ideally be helium, or if possible the helium ion He+, either as an ionic beam
or prepared locally via sequential ionization or a separate pre-ionizing pulse. (In any
case, the requirement of a high Ip is consistent with the weak NZES structure observed
in xenon [167], which we reproduced in Fig. 6.7.) The scaling in (6.16) is certainly un-
favourable, but it points the way to experiments which should be able to resolve whether
this mechanism contributes or not.

As a separate observation, it is interesting to note that the γ2 term that is crucial to
the scaling of the odd-n trajectories is in fact also present for the even-n scaling, which
can be refined to the form

psr
z ≈

F

ω

2 + 1
2γ

2

(n+ 1)π =
(

2 F
ω2 + Ip

F

)
ω

(n+ 1)π = 2zquiv + zexit
(n+ 1)π/ω , (6.17)

which cleanly expresses the fact, shown in Fig. 6.20, that the odd-n trajectories also need
to traverse the tunnel exit to make their soft-recollision date with the ion; here the zexit

contribution is small but it is still present. In fact, this difference in the scaling properties
of the LES energy has already been observed [188], and we reproduce the result in Fig. 6.22.

For the odd-n series, adding in the tunnel exit represents a small correction to the main
result driven by the quiver radius, and this correction is mirrored by similar corrections for
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Figure 6.22: Scaling of the LES width for ionization of argon and xenon in 1.3 µm and 2 µm
fields at varying intensity, with respect to the ponderomotive energy of the field. The naive
scaling as per (6.12) is shown dashed, while the solid lines denote a semiclassical tunnelling
theory with the tunnel exit included, as in (6.17). Figure excerpted from Ref. 188.

the cutoff position in high-harmonic generation [195] and in high-order above-threshold
ionization [101, 196, 197], so this comes about as yet another example of fairly standard
tunnelling theory. For our even-n series of trajectories, on the other hand, this correction
is applied on top of a zero result, so it becomes the driving term for the scaling dynamics
of this series of trajectories.

In addition to the scaling dynamics, if the odd-n do get lifted from consistent-with-zero
by experiments with enough resolution, there is also a specific signature in the ratio of
the momenta of the different structures within each series, which is relatively universal,
coming from the fact that each series scales with n as 1/(n+ 1), but with even n for one
and odd n for the other. Thus, the momentum ratios between successive peaks of the LES
series are expected to go down with n as 3/5, 5/7, 7/9, . . . [175, 176], whereas the odd-n
series should scale down as 1/2, 2/3, 3/4, . . .. The way things stand, however, it will be
hard enough to lift even the first peak out of the experimental zero of energy.

Coming back to the ARM results, the near-zero energy peaks shown in Fig. 6.19,
along with similar peaks associated with the LES regime, scale exactly as they need
to, which we show in Fig. 6.23: the sharp changes in the spectrum, caused by the soft
recollisions’ topological transition, closely track the classical soft recollision scaling of
Fig. 6.21, underscoring the fundamental link between the two.

In this connection, it is worth remarking here that the soft recollisions, a crucial concept
for our (seemingly abstract) branch-cut navigation algorithm of chapter 5, are brought
directly to experimental life in the form of the Low-Energy Structures. The navigation
algorithm is completely dependent on the resolution of the soft recollisions, but more
importantly it requires the solution of both the even-n and the odd-n families to allow for
fully functional ARM spectra in linear fields.

Thus, it is the abstract branch-cut navigation that makes the discovery of the odd-n
soft recollision series inescapable (in contrast, for example to other approaches, where

Fig. 6.22 reprinted with permission from D.D. Hickstein et al., Phys. Rev. Lett. 109, 073004 (2012).
© 2012 by the American Physical Society.

http://dx.doi.org/10.1103/PhysRevLett.109.073004
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Figure 6.23: Variation of the on-axis ionization amplitude |a(p)|2, in an arbitrary loga-
rithmic scale, as a function of the wavelength and the corresponding Keldysh parameter γ.
The sudden drops in amplitude of Fig. 6.19 shift along the momentum axis with a scaling
that closely matches the classical soft-recollision trajectories, shown as red dots. Here the
transverse momentum p‖ has been chosen so that the transverse coordinate of the clas-
sical trajectory has a small but positive value, x = 1.07 1

κ , at the first soft recollision at
ωt ≈ 2π, to avoid the hard singularity of the Coulomb kernel. Here we take F = 0.05 a.u.
κ = 1.07 a.u., scaling γ as a function of ω only.

the odd-n series is still present, but it is by nature much easier to miss); our account of
the NZES therefore underscores the importance of the branch-cut navigation formalism.
Other recent applications, in a higher-energy scenario, also underscore this [55].

Finally, it is also important to point out that, irrespective of the precise mechanism
which translates the soft-recolliding trajectories into peaks in the photoelectron spectrum –
which can be the ARM method of tracking imaginary phases over laser-driven trajectories,
but also the CCSFA method with semiclassical calculations on top of full trajectories, the
ISFA interpretation in terms of single Born scattering terms, or the Monte Carlo focusing
mechanism – it is quite clear that the even-n trajectories shown in Fig. 6.20 translate
into photoelectron energy peaks, and the same should apply for the odd-n trajectories,
which are dynamically very similar. This can be seen, for example, in Fig. 6.11, where
the first odd-n recollision causes a caustic similar to the one behind the standard LES,
but at NZES energies, but a closer investigation is required, on all of the mechanisms, to
establish the exact nature of the connection and the contribution of this mechanism to
the NZES.
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Chapter 7

A brief introduction to high-order harmonic generation

Having spent the previous six chapters on the physics of ionization in strong fields, we
will now switch tracks to a separate strong-field physics phenomenon, often considered the
flagship experiment of the field; high-order harmonic generation (HHG). Broadly speaking,
this describes the emission of high-frequency radiation that results when a strong laser
pulse interacts with matter, usually in the form of a femtosecond pulse interacting with a
gas. In a typical setting, this will result in a broad comb of harmonics of the driving laser,
as shown in Fig. 7.1, usually with a long plateau with harmonics at essentially the same
intensity.
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Figure 7.1: Archetypical HHG spectrum, calculated using SFA theory for helium in a
800 nm field at 1014 W/cm2, in an arbitrary logarithmic scale. Typical features include
an exponential drop-off for low-order harmonics, a flat plateau between the ionization
threshold at nω > Ip and the harmonic cutoff nmaxω ≈ Ip+ 3.17Up, and exponential decay
drop-off after that.

High-order harmonic generation is one of the most varied and dynamic parts of strong-
field physics: it offers the technological promise of bright pulses of extremely high-frequen-
cy radiation, which can be used to probe matter at its fundamental timescales [42, 198];
it can be employed ‘in situ’ use the harmonic generation process as an incisive and fast
probe of the structure and dynamics of the generation medium [126]; and it offers a
flexible platform where it is possible to produce finely-tailored driving pulses to control
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the electronic motion to a remarkable extent [199, 200], with a direct impact on the
experimental signal.

Here we will be concerned with the latter possibility: the use of driving fields with
nontrivial polarizations to extract information about the medium and the harmonic gen-
eration process, and to extend the regimes that the generated radiation can access. More
concretely, in chapters 8 and 9 we will deal mostly with ‘bicircular’ fields – combinations
of counter-rotating circularly polarized driving lasers, which combine to form flexible and
varied field shapes, both at each individual point and as a coherent variation across the
sample. In addition, bicircular fields have the appeal that each circular driver on its own
would produce no harmonics, but when combined they are as efficient as linear drivers,
with a much broader toolset.

Before we begin, however, it is necessary to start with a brief review of the harmonic
generation process and its theoretical description. There are several good HHG reviews
in the literature [44, 201–203], so we will refer the reader interested in further details to
those works, but we will work through the fundamental material here. In this chapter,
we will showcase the basic framework of our understanding of HHG, and we will lay the
foundation for the calculations, within the so-called Lewenstein model [195], that underpin
our work in the next two chapters.

Then, in chapter 8, we will use this theory to analyse the conservation properties of spin
angular momentum in HHG using bicircular fields of different frequencies – one infrared
field and its second harmonic – and later, in chapter 9, we will use non-collinear bicircular
beams at the same wavelength to probe the harmonic emission at the breakdown of the
dipole approximation as the wavelength of the driver increases, extending the standard
Lewenstein model to this beyond-dipole situation.

This chapter reviews standard material from the literature, roughly following Ref. 202
for the technical material. This material, along with original developments on HHG beyond
the dipole approximation, is implemented as an open-source Mathematica package in

8. E. Pisanty. RB-SFA: High Harmonic Generation in the Strong Field Approxima-
tion via Mathematica. https://github.com/episanty/RB-SFA, v2.1.2 (2016).

7.1 Theoretical approaches to HHG

The main tool used to understand and explore the generation of high-order harmonics
by a strong field is generally known as the three-step model [195, 204], which is shown
schematically in Fig. 7.2. In this model, when the strong laser driver reaches an atom
of the target, each field maximum will ionize a fraction of the population through tunnel
ionization (a), liberating electron population onto the continuum. Once liberated, this
electron will move in the continuum driven essentially by the laser, oscillating away from
the ion (b) and then back towards it (c). Finally, in the third step and final step, the
electron will pass by its parent ion (d), and in the ensuing collision it will emit a burst of
radiation which will go on to form part of the harmonic emission.

Fig. 7.2 copyright footnote.

https://github.com/episanty/RB-SFA
http://dx.doi.org/10.5281/zenodo.164626
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Figure 7.2: Main components of the three-step model, as described in the text: ioniza-
tion (a), propagation (b), (c), and recollision (d). Figure excerpted from Ref. 43.

Even within its simplified confines, the three-step model can be understood in a variety
of different ways. For example, on a purely classical level, the field can be seen as liberating
a small population of classical electrons in the ionization step, which then propagate and,
when they come back to their parent ion, recombine into the electron hole they left behind,
emitting their kinetic energy as either Bremsstrahlung radiation or some form of radiative
quantum transition. This is generally known as the simple-man’s model of harmonic
emission, and it can account well for some spectral features (like the location of the cutoff
at nmaxω ≈ Ip + 3.17Up, which arises as Ip plus the maximal kinetic energy of classical
electrons that are ionized into zero longitudinal velocity at any point during the field) but
it has no answer for things like the harmonic intensity.

One level above that, with the electron described throughout as a quantum particle
with a wavefunction of its own, we can recognize the ionization step simply as the leak-
age of some amount of electron wavefunction away from the bound states of the atom,
which is then jostled about by the driving field. When this continuum wavepacket is then
driven back to the neighbourhood of the atom, it has acquired a significant momentum
and energy (so it has a short wavelength and high frequency) but it remains coherent
with the remaining bound wavefunction, so the two will interfere, which causes the total
wavefunction to oscillate back and forth quickly. This translates into oscillations of the
electron’s dipole moment, which therefore emits radiation.

In general, the theoretical analysis of high-harmonic generation offers difficulties on a
wide number of levels. For example, the three-step model assumes that only a single elec-
tron is responsible for the harmonic emission (which is known as the Single-Active Electron
approximation, or SAE), and this is generally quite accurate. However, it can fail when
there are multi-electron dynamics happening inside the ion during the electron excursion,
in which case full-dimensionality TDSE simulations of the interaction are necessary; these
are possible [205] but very demanding computationally.

Similarly, even inside the single-active-electron approximation it can happen that there
is a significant effect of the excited (but bound) states of the atom on the harmonic
emission [206, 207], in which case it is still necessary to solve the Schrödinger equation
numerically. This can be via a number of approaches [48, 208], but it is generally a
challenging computation: the long excursion amplitudes require a large numerical grid,
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the high electron momenta require a very fine grid spacing, and the high energies call for
very small time steps, all of which combine to make for very intensive calculations in the
near IR, and especially so in the mid-IR domain.

In addition to these difficulties on the microscopic response of each atom in the sample,
HHG is also a macroscopic phenomenon, since the harmonic emission from all the atoms
in the sample is added together to produce the detected signal [198, 209], leading to the
phase-matching problems that occur throughout nonlinear optics [210]. While this means
that HHG can be used to provide very bright sources of UV and soft x-ray radiation, it also
means that to predict the experimental response one needs to account for the macroscopic
propagation of the pulse [211], which adds a layer of complexity and makes ab initio single-
atom calculations infeasible. In this work we will not consider phase-matching aspects
of HHG further.

Fortunately, however, there is indeed a simple tool that can provide a deep insight
into the generation of high-order harmonics while still providing a quantitatively good
approximation to the harmonic emission. This is known as the Lewenstein model [195],
and it is essentially an application of the Keldysh-style Strong-Field Approximation – the
assumptions that there is only one relevant atomic state, and that the electron dynamics in
the continuum are completely driven by the laser field – to the calculation of the harmonic
emission. In the rest of this chapter, we will flesh out this construction, to be built upon
in chapters 8 and 9.

7.2 Harmonic generation within the strong-field approxima-
tion

We consider, then, the generation of harmonics by a quantum system in a strong laser
field, which we investigate via the dipole moment of the electron,

D(t) = 〈Ψ(t)|d̂|Ψ(t)〉 , (7.1)

which in turn relates to the amplitude of the emitted radiation via the dipole accelera-
tion d2

dt2 D(t) [212]. To tackle this problem, within the Lewenstein model, we will make
the key assumptions that only one electron is active, that the nucleus stays fixed in space,
that the dynamics occurs in length scales much smaller than the laser wavelength (i.e. the
dipole approximation), that only a single atomic bound state is involved, and that once
in the continuum the electron is wholly driven by the laser field in Volkov-state dynamics.

(These last two, in particular, are a departure from our earlier developments on multi-
electron dynamics and the inclusion of the Coulomb field in the continuum, and indeed it
is possible to build multi-channel HHG descriptions [125, 126, 202], as well as including
the effects of the Coulomb potential [84], but they will not be necessary for our purposes
here.)
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We therefore formulate the Schrödinger equation for our system as

i
d
dt |Ψ(t)〉 = H(t) |Ψ(t)〉 =

[
p2

2 + U(r) + VL(t)
]
|Ψ(t)〉 , (7.2)

where U(r) is an effective atomic potential, and

VL(t) = −d · F(t) (7.3)

is the laser interaction in the length gauge, with F(t) = − d
dtA(t) for the vector poten-

tial A(t). To solve this Schrödinger equation, we use the same trick we described in the
Mathematical Aside 2.1, the Dyson expansion, to momentarily duck the question. That is,
we can simply separate the full propagator U(t, t′) for H(t) into a bound-state evolution
U0(t, t0), for which i d

dtU0(t, t0) =
(

1
2p2 + U(r)

)
U(t, t0), from the full solution, giving the

formal solution

|Ψ(t)〉 = −i
∫ t

t0
dt′U(t, t′)VL(t′)U0(t′, t0) |Ψg〉+ U0(t, t0) |Ψg〉 . (7.4)

Here, as in the SFA treatment we reviewed in the Introduction, we already have a clean
form of the Ansatz we needed: a ground-state component U0(t, t0) |Ψg〉 = e−iEg(t−t0) |Ψg〉,
superposed with a continuum wavefunction ionized at a superposition of times t′ via the
laser coupling VL(t′). In essence, then, the Lewenstein version of the Strong-Field Ap-
proximation here consists in changing the full propagator in the integral, U(t, t′), for one
that is only driven by the laser: thus, we write

|Ψ(t)〉 = −i
∫ t

t0
dt′e−iEg(t′−t0)UL(t, t′)VL(t′) |Ψg〉+ e−iEg(t−t0) |Ψg〉 (7.5)

where UL(t, t′) obeys i d
dtUL(t, t′) =

(
1
2p2 + VL(t)

)
U(t, t′).

Moreover, we can now substitute this back in to our expression for the harmonic dipole
D(t), which gives

D(t) = 〈Ψ(t)|d̂|Ψ(t)〉

=
∫ t

t0
dt′
∫ t

t0
dt′′e−iEg(t′−t′′) 〈Ψg|VL(t′′)UL(t′′, t) d̂UL(t, t′)VL(t′) |Ψg〉

− i
∫ t

t0
dt′e+iEg(t−t′) 〈Ψg| d̂UL(t, t′)VL(t′) |Ψg〉

+ i

∫ t

t0
dt′e−iEg(t−t′) 〈Ψg|VL(t′)UL(t′, t)d̂ |Ψg〉

+ 〈Ψg|d|Ψg〉 , (7.6)

with the last term vanishing since 〈Ψg|d|Ψg〉 = 0. Here we apply an additional approxi-
mation, neglecting the initial term, which represents continuum-continuum transition and
is not part of the three-step model we wish to measure (and, in any case, should be weak
unless there is significant population in the continuum). We are left, then, with a single
integral, which we extend to negative infinity for definiteness now that the phase e−iEgt0



166 Electron dynamics in complex space and complex time

has dropped out, and its conjugate:

D(t) = −i
∫ t

−∞
dt′e+iEg(t−t′) 〈Ψg| d̂UL(t, t′)VL(t′) |Ψg〉+ c.c. (7.7)

Here we are mostly finished making approximations, and the expression (7.7) is in a
way our final result for the harmonic dipole, though of course it is not much use in its
symbolic form. There is, of course, much we can still say about this expression, since we
know the solutions of the Schrödinger equation for UL(t, t′), the Volkov solutions

∣∣∣k(V)(t)
〉

from (2.17), and we can therefore simply write it down as

UL(t, t′) =
∫

dp
∣∣∣p(V)(t)

〉〈
p(V)(t′)

∣∣∣
=
∫

dp |p + A(t)〉
〈
p + A(t′)

∣∣ e− i
2

∫ t
t′ (p+A(τ))2dτ , (7.8)

in terms of the plane wave states |p + A(t)〉 and |p + A(t′)〉. Substituting this into the
harmonic dipole from (7.7), and setting Eg = −Ip, we get

D(t) = −i
∫ t

−∞
dt′
∫

dp 〈Ψg|d̂|p + A(t)〉
〈
p + A(t′)

∣∣VL(t′)
∣∣Ψg

〉
e−iIp(t−t′)− i

2

∫ t
t′ (p+A(τ))2dτ

+ c.c. (7.9)

Here we can make some further simplifications, by encapsulating the dipole transition
matrix element 〈p + A(t)|d̂|Ψg〉 from the ground state to plane wave states as the function

d(p + A(t)) = 〈p + A(t)|d̂|Ψg〉 , (7.10)

which also applies to the ionization matrix element

〈
p + A(t′)

∣∣VL(t′)
∣∣Ψg

〉
= −F(t′) ·

〈
p + A(t′)

∣∣d̂∣∣Ψg
〉

= −F(t′) · d(p + A(t′)). (7.11)

Moreover, we can recognize the phase in (7.9) as essentially the Volkov action from (2.44),
and we define this more precisely as

SV (p, t, t′) = Ip(t− t′) + 1
2

∫ t

t′
(p + A(τ))2 dτ. (7.12)

With this notation in place, then, we have the harmonic dipole in the form

D(t) = +i
∫ t

−∞
dt′
∫

dp d(p + A(t))∗e−iSV (p,t,t′) F(t′) · d(p + A(t′)) + c.c. (7.13)

This is, mostly, our final result, and it gives us a direct, calculable line on the harmonic
dipole, which can be obtained by direct numerical integration of the four-dimensional
integrals over t′ and p if necessary [195], with a one-dimensional index over t.

In practice, however, it is generally always acceptable to simplify this one step further
by taking the saddle-point approximation, as per (2.42), over the intermediate momentum
p, because the phase (7.12) is exactly quadratic, so there is always a single momentum
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saddle point, given by the linear equation

∂SV
∂p (ps, t, t′) =

∫ t

t′
(ps + A(τ)) dτ = 0, (7.14)

and the action is generally gaussian around it.
Here it is interesting to remark that the uniqueness of the momentum saddle point

can also be usefully rephrased as stating that given any two arbitrary ionization and
recollision times t′ and t, there will always exist a unique canonical momentum p such that
an electron ionized at t′ will recollide with the ion at time t. The condition (7.14), then,
can also be read as a return condition: an electron ionized at time t′ will have trajectory
r(t) =

∫ t
t′ (p + A(τ)) dτ , and (7.14) asks that this trajectory return to the origin.

Performing this saddle-point approximation over p, then, leaves us with the harmonic
dipole in the form

D(t) = +i
∫ t

−∞
dt′
(

(2π/i)3

∂2SV /∂p2

)1/2

d(ps + A(t))∗e−iSV (t,t′) F(t′) · d(ps + A(t′)) + c.c.,

(7.15)

where ∂2SV /∂p2 denotes the determinant of the Hessian of SV with respect to p at the
saddle point, which can easily be calculated to be the excursion time ∂2SV /∂p2 = (t−t′)3.
Here one must note that this can in fact vanish – or at least become very small –, so it is
necessary to regularize it in the form

(
(2π/i)3

∂2SV /∂p2

)1/2

=
( 2π/i
t− t′ + iε

)3/2
. (7.16)

The regularization here is also a mathematical necessity, since in the limit where t− t′ is
small the saddle-point approximation does not actually hold (since the gaussian in (7.13)
is then much broader than the other factors). Adding the regularization factor iε actually
corresponds to multiplying the spatial factors d(ps + A(t))∗F(t′) · d(ps + A(t′)) by a
broad gaussian, which is mostly acceptable as long as the gaussian is much broader than
the characteristic scale κ =

√
2Ip at which they vary. This then sets ε ∼ 0.1/Ip as the

appropriate scale for this regularization factor.
That aside, the harmonic dipole in the saddle-point regime for p reads

D(t) = +i
∫ t

−∞
dt′
( 2π/i
t− t′ + iε

)3/2
d(ps + A(t))∗e−iSV (t,t′) F(t′) · d(ps + A(t′)) + c.c.,

(7.17)

with the factor
(

2π/i
t−t′+iε

)3/2
providing a clean representation of the spreading of the electron

wavepacket while it is in the continuum. This form is particularly useful and flexible, and
it permits the calculation of the harmonic dipole using only a single-dimensional numerical
integral, which can be done quickly and cheaply, and it is the main form implemented in
Ref. 8 and in the calculations in the following chapters.
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In addition to this, however, it is still possible to take the saddle-point approximations
somewhat further, and apply them to the temporal integrals. One way to do this is to
keep the evaluation time t fixed and perform the saddle-point approximation over t′, but
it is much more useful to do this directly for the Fourier transform of the harmonic dipole,

D̃(Ω) = +i
∫ ∞
−∞

dt
∫ t

−∞
dt′
(

(2π/i)3

∂2SV /∂p2

)1/2

d(ps + A(t))∗eiΩt−iSV (t,t′) F(t′) · d(ps + A(t′))

+ c.c. (7.18)

(where one must change Ω→ −Ω in the complex conjugate term), since in the end we will
be primarily interested in frequency-domain harmonic spectra.

This form is then again well approximated in the saddle-point regime, where the saddle
points are given by the system

∂S

∂t′
= 0 =⇒ 1

2(ps + A(t′))2 + Ip = 0
∂S

∂t
= 0 =⇒ 1

2(ps + A(t))2 + Ip = Ω,

(7.19a)

(7.19b)

which admits the clean semiclassical interpretation of conservation of energy during the
tunnelling step, in (7.19a) and exactly analogous to the saddle-point equations for ioniza-
tion from chapter 2, and in the recombination step, in (7.19b).

The saddle-point approximation for D̃(Ω) is the fastest to calculate, though it requires
an additional framework to find all the saddle point pairs and decide which ones should be
kept in which regime, and it is generally very accurate at a fraction of the computational
cost. For our purposes, however, we will only recur to the saddle-point method for D̃(Ω) for
the largest calculations we will attempt in chapter 9, so we will refer the reader interested
in the details to the literature for further information.

As mentioned earlier, the author’s implementation of this (standard) theory is avail-
able as an open-source Mathematica package at Ref. 8; this is one of a handful of such
packages [213–218] but it is probably the simplest to install and use, with a sample usage
(used to produce the typical spectrum shown in Fig. 7.1) displayed below in Fig. 7.3.

At this point, having reviewed the general features of high-order harmonic generation,
and having built the SFA framework we will use for calculations, we now turn to its
applications in the following two chapters.
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In[1]:= Needs["RBSFA`"]

In[2]:= conditions :=

Sequence[CarrierFrequency → 0.057, TotalCycles → 4, PointsPerCycle → 130]

In[3]:= harmonicDipole = makeDipoleList

VectorPotential → Functiont, F
ω
Cos[ω t], 0, 0,

FieldParameters → {F → 0.053, ω → 0.057},

Target → "Helium",

conditions

;

In[5]:= spectrumPlotter[

getSpectrum[Most[harmonicDipole]],

conditions,

plottingNiceties

]

Out[5]=

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
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Figure 7.3: Screenshot of the code used to produce Fig. 7.1 with the RB-SFA Mathematica
package available as Ref. 8. The code implements the standard SFA theory developed in this
chapter, along with the beyond-dipole corrections discussed in chapter 9, and it is simple and
easy to use.
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Chapter 8

Spin conservation in bicircular high-order harmonic
generation

This chapter examines high-order harmonic generation from the perspective of looking for
harmonics with circular polarization, which is technologically interesting and also provides
a window into the structure of the conservation laws in HHG. In particular, we examine
the first experimental scheme to successfully produce circularly polarized harmonics, using
a combination of two drivers, one at 800 nm and its second harmonic at 400 nm, with
opposite circular polarizations (‘bicircular’ fields), and we describe a photon-picture model
for the exchange of spin angular momentum in the process.

This chapter contains work previously published in references

2. M. Ivanov and E. Pisanty. High-harmonic generation: taking control of polar-
ization. Nature Photon. 8 no. 7, pp. 501–503 (2014) (News & Views).

3. E. Pisanty, S. Sukiasyan and M. Ivanov. Spin conservation in high-order-
harmonic generation using bicircular fields. Phys. Rev. A 90 no. 4, p. 043 829
(2014). arXiv:1404.6242.

8.1 Circular polarization in high-order harmonic generation

As we saw in chapter 7, HHG is a very versatile process and it is very useful both as a
tool to explore the dynamics and structure of atoms and molecules using the harmonic
generation process itself, as well as a flexible source of short, bright, coherent pulses of
high-frequency radiation for use in further experiments. Over the two decades since the
discovery of HHG, significant progress has been made in improving the toolset that it
provides as a light source, by increasing the cut-off frequency, flux and coherence, the
design of gating schemes that allow the use of a single radiation burst, and the increasing
control over the emitted radiation, among many others.

One tool that has mostly lacked from this development is the polarization of the
emitted harmonics, which has been essentially confined to linear polarizations along the
polarization of the driving IR field. This allows for plenty of interesting physics, including
vector manipulations on light by using multiple pulses with different linear polarizations,
but it also rules out circularly polarized pulses, which limits the extent to which the
angular momentum structure of atoms and molecules can be probed.
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http://arxiv.org/abs/1404.6242
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More importantly, however, the lack of circularly polarized pulses completely elimi-
nates the extent to which the chiral structures of matter can be investigated. This is an
important consideration in the study of biomolecules, most of which are chiral [219, 220],
as well as in the study of magnetic properties of matter [221, 222], since the magnetization
of a material is also a chiral property. In fact, the X-ray magnetic circular dichroism
(XMCD) of magnetic materials – the differential absorption of one circular polarization
over its opposite handedness by a magnetized material – is an important tool in their
study.

Fortunately, it has been possible for some time to produce the circularly polarized
radiation required by these fields, using synchrotron and free-electron laser (FEL) radiation
produced using suitable undulators [223–225], and among other things this has enabled
the growth of XMCD as a tool for the time-domain study of fast magnetization processes.
However, synchrotrons and FELs are facility experiments, requiring a large and particle
accelerator to function, and this makes beam time on those experiments a scarce resource.
Generally, this is solved by going to table-top sources based on HHG, but for circular
polarizations this is an issue; it is therefore desirable to extend the capabilities of HHG to
include chiral polarizations with nonzero helicity.

The immediate response to this problem, of course, is to try to produce high-order
harmonics using an elliptically polarized driver, but this does not work. The generation of
high-order harmonics is in its essence a recollision-based phenomenon, and in the presence
of an elliptical driver the three-step-model electrons will be shifted aside and miss the ion
in their oscillations, quickly quenching the harmonic emission [226–228]. (Moreover, as we
shall see later, there are fundamental selection rules [229, 230] which prevent a circularly
polarized driver from emitting any harmonic radiation.)

Similarly, it is tempting to attempt to borrow from the optical domain techniques
and look for an extreme-ultraviolet (XUV) waveplate to apply to linearly-polarized HHG
pulses. Unfortunately, there are no transmissive waveplates in the XUV regime, as materi-
als become opaque at the thicknesses where they would become birefringent. It is possible
to build circular polarizers using a succession of grazing-incidence reflections [231], but
this is a challenging technique and it has not gained much traction [232]. Moreover,
the efficiency of such polarizers is very low, limiting the source brightness and therefore
the usefulness for applications; this circular HHG signal can be amplified using a plasma
soft-X-ray-laser amplifier [233], but this raises the experiment’s complexity even further.

Over the years there have also been several proposals for how to provide for circularly-
polarized HHG, generally challenging to implement; these have included the use of multi-
colour beams, with orthogonal polarizations [234] or propagation directions [235, 236], the
use of strong static [237] and terahertz [238] fields, nanostructure arrays [239], and quasi
phase matching with a birefringent waveguide [240].

Somewhat more happily, circular harmonics have been produced using a single linearly-
polarized driver on aligned molecules [126, 241], though at very low ellipticity and effi-
ciency, as well as with orthogonally-polarized two-colour drivers [242, 243] and, at low
efficiency, with atoms and elliptically polarized drivers [226, 244, 245] More recently, and
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more promisingly, Ferré et al. used an elliptical driver, with resonantly produced harmon-
ics, to produce reasonably bright elliptically polarized high-order harmonics [246].

The real breakthrough, however, came in 2014, when A.Fleischer and co-workers pro-
duced bright, fully circular high-order harmonics using only three-step-model physics [247].
They used two counter-rotating circularly polarized drivers of equal intensity but different
frequency, one at 800 nm and its second harmonic at 400 nm, which combine to make the
trefoil-shaped field shown in Fig. 8.1, and which is known in the literature as a ‘bicircular’
configuration. This field shape then permits recollisions, and its selection rules permit
harmonic emission at arbitrarily high frequencies. It will be our main object of study in
this chapter.

Figure 8.1: Bicircular field configuration, formed by the equal-intensities superposition of
an infrared right-circular driver at 800 nm (left inset) and its second harmonic at 400 nm
with left-circular polarization (right inset). Both fields are shown as arrows over a third
of the infrared period; in this interval the right-circular infrared covers a 120° angle, while
the second harmonic covers 240° in the opposite direction, so they are equal at the start
and end of the interval. When superposed, the two fields combine to form the three-lobed
trefoil shown in purple.

Bicircular fields had been explored in the literature for some time [230, 248–256], and
indeed an early experiment [248] implemented the variation, observing signal with the
correct selection rules, but (for reasons which remain unclear) it was not followed up
experimentally for some time. The recent detection by Fleischer et al., however, sparked
a flurry of interest in the mechanism, both theoretical and experimental.

Experimentally, the available information about the process has grown considerably.
In their initial detection, Fleischer et al. used a rotating linear polarizer, as shown in
Fig. 8.2(a), with a very low dependence of the signal on the polarizer angle, implying
that the harmonics were circularly polarized. This was further confirmed when later
experiments swapped the gas jet for a gas-filled hollow waveguide, allowing for enough
signal to perform X-ray magnetic circular dichroism experiments [257, 258], providing an
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unambiguous confirmation of a nonzero helicity.
(On the other hand, the available XMCD experiments using this XUV source do not

quite agree with the corresponding measurements performed on synchrotron light sources,
which are more established. This does not invalidate the observation of the presence of
helicity, since mirror versions of the same observe different results, regardless of their
orientation, but it does call for much more careful polarimetry measurements on that
radiation to confirm the amount of helicity of the radiation. Unfortunately, reliable XUV
polarimetry in this regime, particularly with respect to the helicity of the radiation, is a
very challenging task.)

Further experimental developments have expanded the mechanism to other combi-
nations of driver wavelengths [258], explored the role of chirality in the phase-matching
conditions for generation inside a hollow waveguide [259], and simplified the non-collinear
Mach-Zehnder-type interferometer used in Ref. 247 to obtain the bicircular fields, as shown
in Fig. 8.2(a), for a simpler in-line configuration [260]. In addition, and of special in-
terest for our following chapter, the bicircular configuration has also been extended to
non-collinear beam configurations [261], allowing for the spatial selection of beams with
different helicities.

Figure 8.2: Initial observation of bicircular high-order harmonics [247], showing a schematic
of the experiment (a), and a sample harmonic spectrum (b). The second harmonic is
generated in a nonlinear BBO crystal, and the two fields are split and recombined using
dichroic mirrors (DM), with their circular polarizations set using independent waveplates.
The harmonics are emitted in pairs of lines, at intensities comparable to those with linearly
polarized drivers, shown dashed in (b). After the harmonic generation in a gas jet, a
rotating linear polarizer tests the polarization of the harmonics, with the corresponding
traces (shown in (c)) displaying little variation in the intensity with respect to the polarizer
angle. Figure excerpted from Ref. 247.

Fig. 8.2 reprinted by permission from Macmillan Publishers Ltd: Nature Photon. 8, p. 543 © 2014.

http://www.nature.com/nphys
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Finally, it is also important to note recent experiments performing detailed polarimetry
on the resultant HHG radiation [262–264], with the crucial finding that the harmonics
can be produced in a partially depolarized state [263]. The origin of this depolarization
is completely unclear, though it may to originate from spatial variations of the harmonic
polarization across the laser focus. Regardless of its origin, the finding underscores the need
for helicity-dependent XMCD observations, above and beyond the rotational invariance
with respect to a linear polarizer, as the hallmark confirmation that circular harmonics
are being emitted.

On the theory side, most of the early papers focus on explaining the original ob-
servation [248] and providing a suitable quantum-orbit SFA theory [249, 252, 254] and
understanding the temporal structure of the HHG emission [253], which we will also ex-
plore below. In the aftermath of the initial observation, interest has shifted to the angular
momentum structure of the emission [2, 3, with a similar later observation in 265], which
is the work we will explore in depth in this chapter, as well as the implications for selec-
tion rules for molecules in bicircular fields [266–271], and the search for ways to maximize
the global helicity of the harmonic emission [259, 272–274] and to obtain single circularly
polarized attosecond pulses [274, 275]. Finally, to round things out, is a clean analysis of
bicircular HHG in a frame that rotates with the total electric field [276].

In addition to this, because they allow tunnel-ionized electrons to return to the ion
where they can interact with it, bicircular fields have also shown to be of considerable
interest for studies of strong-field ionization [277–281], as well as above-threshold detach-
ment [282], electron rescattering [283], non-sequential double ionization [284], and laser-
assisted recombination [285], as well as for inducing spin polarization for electrons ionized
by strong fields in the presence of spin-orbit coupling [286, 287].

8.2 Selection rules in bicircular HHG

There are multiple ways to understand the harmonic emission induced by bicircular fields,
and much of our analysis will focus on a frequency-domain analysis of the radiation in
terms of photon transfers within a parametric optical process. However, it is important
to ground this first in a time-dependent view of the induced harmonic dipole.

HHG is, at its core, a recollision phenomenon, and bicircular fields are only able to
produce high-order harmonics efficiently because electrons that are tunnel-ionized near
the peak of each lobe have a large probability of recolliding with the ion. The trajectories
in question are mostly of the character shown in Fig. 8.3, with the ionization just before
one field maximum and the recollision at the close of the following lobe.

This has two important consequences. The first is that each burst of XUV emission
comes from a single recollision event with a well-defined direction, so each burst of radiation
will mostly be linearly polarized. However, because of the three-fold symmetry of the field,
each of these recollisions, with their attendant bursts of XUV radiation, is necessarily
mirrored by two other identical sets of trajectories and radiation bursts, trailing each other
by a third of a period of the fundamental and rotated with respect to each other by 120°.
The HHG radiation, then, consists of a train of attosecond pulses, linearly polarized along
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directions that rotate steadily during the pulse, as shown in Fig. 8.4.

Figure 8.3: Typical trajectories resulting in harmonic emission in a bicircular field, with the
ionization and recollision times ti and tr corresponding to the trajectory shown in black.
Because of the symmetry of the field, there will be two additional identical trajectories
(shown in blue and green) each period, oriented at 120° from each other. Figure excerpted
from Ref. 247.

Figure 8.4: Typical attosecond pulse train produced by the bicircular fields of Fig. 8.1;
the harmonic dipole consists of a train of linearly polarized attosecond pulses, with a
polarization that rotates by 120° from pulse to pulse, exactly mirroring the symmetry of
the total driving field. (It is also important to remark that this example, showing hydrogen
in a monochromatic 800 nm field at 2.24× 1014 W/cm2, has been filtered to include only
harmonics above the 25th with respect to the fundamental.)

Fig. 8.3 reprinted by permission from Macmillan Publishers Ltd: Nature Photon. 8, p. 543 © 2014.

http://www.nature.com/nphys
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The harmonic emission, however, is much easier to understand from a frequency domain
perspective. For the usual high-order harmonic generation, with a linearly polarized driver,
the time-dependent picture of the three-step model can be usefully complemented by a
photon picture analogous to the ones from harmonic generation in perturbative nonlinear
optics, where we envision n photons of the linear driver at photon energy ω as combining to
form a single harmonic photon at energy nω, as exemplified in Fig. 8.5(a). This simplistic
picture is quite capable of explaining the discrete nature of high-harmonic spectra as shown
in Fig. 7.1, including the restriction to only odd harmonic orders once we account for the
conservation of photon parity.

On the other hand, it is important to note that this photon picture is a very incomplete
account of the high-order harmonic generation process. For perturbative harmonic genera-
tion, it is possible to turn the intuitive diagrams of Fig. 8.5 into formal Feynman diagrams
that can be used for quantitative calculations of the harmonic emission. HHG, however,
is a non-perturbative process, and higher-order processes including absorption and stim-
ulated re-emission of photons into the driver field, like the one shown in Fig. 8.5(e), also
have significant contributions. In fact, there is as yet no formal theory that can use such
an expansion to quantitatively account for high-order harmonic emission.
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Figure 8.5: Photon pictures for harmonic generation. Linear drivers (a) can simply combine
an odd number n of photons at frequency ω to make a single nω harmonic. For a single
circularly-polarized driver, however, each driver photon to be combined contributes one unit
of angular momentum to the balance, but the harmonic photon can only take away a single
one of those units, so the channel is forbidden (b). With bicircular drivers, on the other
hand (c, d), the emission can combine n photons of the fundamental with n ± 1 photons
of its oppositely-polarized second harmonic, leaving one net unit of angular momentum
which can be discharged with a harmonic photon. (It is also important to remark, on
the other hand, that these diagrams are incomplete representations of the process, and
that higher-order terms involving more transfers, like the one shown in (e), also provide
significant contributions.)
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Nevertheless, the photon diagrams of Fig. 8.5 are still very useful tools, because if all
the diagrams that contribute to a specific channel share some feature (like, for example,
polarization), then this will be preserved in the final emission.

Ultimately, though, photon diagrams like these are a stand-in for rather different lan-
guage that describes the dynamical symmetries of the system and the selection rules that
result from them [229, 230]. For example, the confinement to integer multiples of the
driving frequency comes about because the driver is periodic, so the response must also
be periodic, which constrains its Fourier spectrum. Similarly, the parity requirement of
only-odd harmonics comes from the symmetry of the field: delaying a monochromatic
linear driver is equivalent to inverting it, so for every burst there will be a mirrored burst
a half-period later, with inverted polarization, and the contributions of these two to each
even harmonic will exactly cancel out. Throughout this chapter, this will be the essential
meaning of the word ‘photon’.

In this photon picture, then, bicircular high-order harmonic emission can be understood
rather easily: we have a small subset of arrows,

• fundamental driver photons of frequency ω and right-handed (⟳) polarization, each
carrying +1 unit of spin angular momentum,

• second-harmonic driver photons of frequency 2ω and left-handed (⤿) polarization,
carrying −1 unit of spin angular momentum, and

• harmonic emission photons of frequency nω, carrying ±1 unit of spin angular mo-
mentum with right/left circular polarization (or possibly a superposition of the two,
coming from the coherent addition of different diagrams with different harmonic
polarization),

and very restricted ways to combine them. Here it is easy to see that the only way to end
up with a single unit of angular momentum, in either direction, is to combine n photons
of the fundamental with n+ 1 photons of the second harmonic, or vice versa, as shown in
Figs. 8.5(c) and (d). This then directly results in spectra like the one shown in Fig. 8.2(b),
containing all integer orders except those divisible by three. These are the labels shown
in green and red in Fig. 8.2(b), marking each harmonic channel by the number of photons
it takes from each driving field.

Similarly, this spectral restriction also follows from a dynamical-symmetries perspec-
tive, by taking the overlap of the series of pulses in Fig. 8.4 with a harmonic of frequency
3kω: after a delay of a third of the period, the 3kω harmonic is unchanged, but the three
successive radiation bursts provide amplitudes rotated from each other by 120° which
collectively cancel out. A more formal analysis [229, 230] can then extend this idea to
counter-rotating bichromatic circular fields of arbitrary frequencies ω1 and ω2, and show
that it can only emit harmonics at energies of the form nω1 + (n± 1)ω2.
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8.3 Experimental confirmation of the selection rules

There are, then, solid theoretical reasons for the selection rules governing the spectrum
displayed in Fig. 8.2(b), as seen by Fleischer et al. [247] and earlier by Eichmann et
al. [248], and this theory combines with the polarization measurements to give assurances
that the harmonics are indeed circularly polarized.

However, in analogy with previous experiments that explored the conservation by
HHG of energy [288] and linear [289] and angular momentum [290], Fleischer et al. went
further in exploring the connection to photon spin angular momentum by modifying the
experiment in two ways.

The first was to confirm the channel identification by detuning one of the drivers: they
used the phase matching in the second-harmonic generation step to select a pulse centred
around 410 nm instead of the exact frequency doubling at 400 nm (remaining, of course,
inside the doubled bandwidth of the fundamental). This changes the frequency ratio to
ω2 = rω1 = rω = 1.95ω1, and it changes the symmetry of the Lissajous figure traced out
by the total field (i.e. as displayed in Fig. 8.1) from three-fold to 2.95-fold, so the trefoil
rotates slowly over multiple periods of the fundamental.

The effect of these changes on the harmonic order nω1+(n±1)ω2 is to slightly detune all
of the harmonics, and to do so by different amounts depending on the channel in question.
The results of this are evident in the redshifted spectrum displayed in Fig. 8.2(b), and
the amount of each detuning confirms the channel identifications shown there, confirming
that the selection rule is of the form nω1 + (n± 1)ω2 (i.e. confirming the split between ω1

and ω2 photons).
More interestingly, Fleischer and co-workers also investigated the conservation of spin

angular momentum in this experiment, by degrading the circular polarization of the two
drivers to different ellipticities, by adjusting the angles α and β of the quarter-wave plates
that set this ellipticity in the experiment as shown in Fig. 8.2(a); we display the Fleischer
et al. experimental results in Fig. 8.6.

In response to this change in the driving fields, the harmonic emission shows a rich
pattern, as exemplified in Fig. 8.6(a) and the equivalent TDSE simulation in Fig. 8.6(c),
with the harmonic emission remaining bright over a considerable range of driver ellip-
ticities. Moreover, polarization measurements also revealed that, outside of the bicircu-
lar α = β = 45° centerline the harmonics become elliptically polarized with a range of
ellipticities, with the waveplate angles affording significant control over the harmonics’
polarization at only moderate cost in the harmonic emission.

The most interesting feature in the experimental spectra is the appearance, out of
the centerline, of additional channels that were originally forbidden, and which are very
clearly marked by their different redshifts as compared to the integer multiples of the
fundamental frequency. Some of these channels appear on the previously forbidden 3kω
harmonics such as the (9, 6) channel that is visible in Fig. 8.6(c) just below 21ω1. Others,
like the (10, 5) channel below 20ω1, flank the centerline channels after they decay.

These channels are forbidden in the fully circular case – there is too much angular
momentum for the harmonic photon to take away – but with the decrease in the angular
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Figure 8.6: Experimental ellipticity scans for bicircular harmonic generation [247], as a
function of the waveplate angles α and β, where α = 0° and 90° produce a linear funda-
mental and α = 45° makes it circular, and analogously for β. The spectra are shown in
linear (a) and log scale (b), and in comparison with a linear-scale equivalent TDSE sim-
ulation (c) for ellipticity scans of the fundamental, and analogously in (d), (e) and (f) for
ellipticity scans of the second harmonic. Figure excerpted from Ref. 247.

momentum of the fundamental, they become allowed. However, this viewpoint mostly
avoids the real question here: these channels have very evident start and end points over
the waveplate angle α, and it falls on theory to explain these features. This is unlikely
to be possible in a detailed, quantitative way (which can be done via SFA calculations,
or even TDSE simulations if necessary, at the cost of an intuitive understanding of the
process), but it should be possible to use the quantum theory of spin angular momentum
for the light field, at least in an approximate way, to explain the major features of these
ellipticity scans.

8.4 Conservation of spin angular momentum

8.4.1 Expectation-value model

In their original work, Fleischer et al. provided a model based on the expectation value
of angular momentum, which we will review in this section. It is moderately successful,
and provides a reasonable prediction of the existence ranges of several channels, shown
as ellipses in Fig. 8.6, but it has some conceptual problems and it requires the emission
of each individual channel as an open process as regards angular momentum. Later, in
section 8.4.2, we will propose an alternative model that can also explain the data while
retaining the parametric aspect of HHG.

The channel assignments, which are made unambiguous by the detuning of the second

Fig. 8.6 reprinted by permission from Macmillan Publishers Ltd: Nature Photon. 8, p. 543 © 2014.
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harmonic, clearly specify a number of channels at harmonic frequency

Ω(n1,n2) = n1ω + n2rω, (8.1)

for integer n1 and n2, and with r = 1.95, which represent the absorption of n1 fundamental
photons and n2 second-harmonic photons. In Fleischer et al.’s expectation-value model,
each of these photons is then understood as carrying the expectation value of the spin of
its respective field, as is the emitted harmonic photon.

To find this expected value, we take an arbitrary elliptical field with signed ellipticity ε,
and we decompose it as a sum of two opposite circular polarizations, êR = 1√

2 (êx + iêy)
and êL = 1√

2 (êx − iêy), yielding

F = F0e−iωt

2
√

2

( 1 + ε√
1 + ε2 êR + 1− ε√

1 + ε2 êL
)

+ c.c. (8.2)

(where we ignore the relative phase between the two components, which gives the orien-
tation of the polarization ellipse). Here the right-circular êR component has definite spin
σ1 = +1 and the left-circular êL has spin σ2 = −1, which means that the expected spin
angular momentum of the field can be calculated to be

〈σ̂〉 = 2ε
1 + ε2 (8.3)

in units of ~. For a field generated by shining linearly polarized light on a half-wave plate
at an angle α to its fast axis, as in the experiment, the ellipticity thus reduces to

〈σ̂〉 = sin(2α). (8.4)

Under these assumptions, the conservation equation can now be formulated: the spin
of the resulting harmonic photon on the channel (n1, n2) must be

〈σ̂(n1,n2)〉 = n1〈σ̂1〉+ n2〈σ̂2〉+ δ(n1,n2), (8.5)

where 〈σ̂1〉 = sin(2α), 〈σ̂2〉 = sin(2β), and α and β are the angles between the fast axes
of the waveplates and the initial linear driver polarizations.

Here each of the three angular momenta can be measured independently, both ex-
perimentally and numerically, and thus a deviation term δ(n1,n2) has been introduced for
consistency. Within the expectation-value model, the harmonic generation process is para-
metric if and only if this term is zero. Fleischer et al. attribute deviations from this to
the failure of perturbative nonlinear optics and the presence of additional excitations, and
call δ(n1,n2) a ‘strong field correction’. This model makes multiple predictions which agree
with the experiment, though some of them require nonzero values of δ(n1,n2).

(i) For the symmetric case where α = β = 45°, we have σ1 = 1 and σ2 = −1, setting
δ(n1,n2) = 0 turns the basic relation (8.5) into σ(n1,n2) = n1−n2. From here, imposing
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the boundedness of photon spins,

|σ(n1,n2)| ≤ 1, (8.6)

coupled with the parity constraint, means that n1 and n2 must differ by unity, which
matches the experimental predictions.

(ii) As the fundamental driver’s waveplate is rotated away from the symmetric case, this
restriction must be expanded to include the magnitude of σ2, and now reads

|n1 sin(2α)− n2| ≤ 1. (8.7)

For each channel n1 and n2 are fixed, so this reads as a restriction on α, and gives
the region where the channel is allowed:

1
2 arcsin

(
n2 − 1
n1

)
≤ α ≤ 1

2 arcsin
(
n2 + 1
n1

)
. (8.8)

This region matches well the observed range of certain channels, such as (7,6), (8,7),
and (9,8), and this provides the basis for the ellipses depicted in Fig. 8.6

For certain series of channels, like (13,4), (12,5), (11,6), (10,7) and (9,8), this restric-
tion also correctly predicts a V-shaped pattern where decreasing harmonic order
gives an allowed region further from α = 45°. On the other hand, to obtain the cor-
rect regions, correction factors as high as |δ(n1,n2)| = 3 are required, and these are not
consistent across these channels (see, in particular, the supplementary information
of Ref. 247).

(iii) For certain channels like (6,7) or (7,8), setting δ(n1,n2) to zero makes the restric-
tion (8.7) take the form

sin(2α) ≥ 1. (8.9)

This implies that parametric channels of this form are only allowed for α = 45°, but
not for any nearby angles. This discontinuity is not present elsewhere in the formal-
ism, and it is not observed in experiment or in simulations, so one is forced, within
the expectation-value model, to abandon conservation of spin angular momentum in
the generation each individual harmonic.

(iv) In its form n2−1
n1
≤ sin(2α), the restriction (8.7) means that, for β fixed at 45°, only

channels with n1 ≥ n2 − 1 can exist, which is in agreement with experiment.

Finally, within this model it is possible to study the deviation δ(n1,n2) as a function
of the experimental parameters. Fleischer et al. show [247] that the average of this quan-
tity over all the channels tends to be close to zero, which would indicate the possibility
that harmonics are emitted in pairs, with the production of each pair conserving angular
momentum. This is indeed possible, in principle, and in such a process Eq. (8.5) would
be replaced by a more general conservation law for the two correlated channels seen as



8. Spin conservation in bicircular high-order harmonic generation 183

a single process. However, this picture does require a re-understanding of the three-step
model.

8.4.2 Decomposition-based model

Several of these features of the expectation-value model are undesirable, most markedly
the unphysical discontinuity from point (iii), but these can be fixed by going to a slightly
more sophisticated model, which we term here the decomposition-based model. This
model will allow us to explain the above features while still allowing for the generation of
each harmonic to preserve spin angular momentum independently of the other channels.

The key to this model is seeing Eq. (8.2) as indicating the presence of a third wave
(a counter-rotating wave at the same, degenerate frequency) which must be included as
such, instead of a change to the angular momentum carried by each photon of the driver.
To bring this to the forefront, we rephrase expression (8.2) in the form

F = F0e−iωt

2 (cos(δα)êR + sin(δα)êL) + c.c., (8.10)

where δα = α − π/4 and we have used ε = tan(α). We focus for simplicity on the case
where β is fixed at 45°.

Within the decomposition-based model, the problem consists now of three waves which
can combine to form harmonics: a left-circular harmonic driver at frequency rω = 1.95ω,
and two fundamental drivers at frequency ω, one right-circular with relative amplitude
cos(δα) and one left-circular with relative amplitude sin(δα). Each channel is now charac-
terized by three integers, (n+, n−;n2), where n+ (n−) photons are absorbed from the right-
(left-)circular fundamental driver, and n2 from the harmonic driver, to give an emitted
frequency of

Ω(n+,n−;n2) = (n+ + n−)ω + n2rω. (8.11)

Certain channels require negative values for n− or n+ for one or both spins of the
harmonic photon. In this case, the channel represents stimulated emission into that driver.
This is necessary, for example, to explain the observed generation of elliptically polarized
photons on channels of the form (n1, n1 + 1) like (6, 7) and (7, 8). This is, however,
not too surprising; in fact, we already met one similar process in Fig. 8.5(e). In this
extreme nonlinear setting, each harmonic contains contributions from processes of very
many orders, and all but the lowest of these contain absorption and stimulated re-emission
of photons from and to the driver fields.

Since each field has photons of a definite spin, the conservation of angular momentum
reads in this model as

σ(n+,n−;n2) = n+σ+ + n−σ− + n2σ2, (8.12)

where σ+ = +1 and σ− = σ2 = −1.
To obtain predictions, we apply the basic principle that the amplitude of an n-photon

process should scale as the nth power of the driving field. This describes the leading
term in the corresponding perturbation expansion, and applies both to absorption and to
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stimulated emission.
As the waveplate is rotated away from the symmetric setting at α = 45°, the initial

energy is transferred from the right-circular driver to the left-circular one. Each channel
(n+, n−;n2) absorbs an independent number of photons from each driver, which means
that its amplitude must have a basic dependence of the form

F(n+,n−,n2) ∼ cos|n+|(δα) sin|n−|(δα), (8.13)

and the harmonic intensity is the square of this,

I(n+,n−;n2) ∼ cos2|n+|(δα) sin2|n−|(δα). (8.14)

For most channels n+ and n− are relatively large integers, so the functions in (8.13) and
(8.14) can be rather sharply peaked.

Within this model there are no hard boundaries to the existence regions, and the
harmonics are in principle possible for any set of laser parameters. Instead, the predictions
are in terms for the basic profile of each channel as a function of the driver ellipticity.
However, a good approximation to the relevance region of each channel is the region
where it is above half of its maximum intensity; we display these regions in Fig. 8.7.

Figure 8.7: Existence regions for the different harmonics predicted by the decomposition-based
model compared to SFA numerical simulations. The ellipses are drawn with arbitrary widths at
the half-maximum-intensity ranges in ellipticity defined by Eq. (8.14). We display only the lowest-
order channel for each harmonic order and helicity, though higher-order channels are also present
which partly overlap with the ones displayed. The simulations use a 10-cycle flat-top envelope
with equal-intensity 2× 1014 W/cm2 fields driving argon, as in Ref. 247.

One interesting feature of this model is that each channel splits into two different chan-
nels with opposite spin. For instance, the channel identified as (10, 5) in the expectation-
value model, at frequency Ω = (10+5r)ω, splits into the two channels (8, 2; 5) and (7, 3; 5),
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with spin +1 and −1 respectively, giving it an elliptical polarization that depends on the
relative weights of the two channels. In general, the channel (n1, n2) splits into the channels

(n+, n−, n2) =
(
n1 + n2 + σ

2 ,
n1 − n2 − σ

2 ;n2

)
(8.15)

with spin σ = ±1. For this expression to give integer n±, the sum n1 +n2 must be an odd
integer, which matches the parity constraint of the expectation-value model.

As is seen in Fig. 8.7, the existence regions for these two channels overlap but do
not coincide, and they agree rather well with numerical simulations without any free
parameters. The superposition of right- and left-circular contributions whose amplitude
peaks at different driver ellipticities helps explain the rich dynamics of the polarization of
each harmonic shown by both experiment and numerics.

One important feature of this model is its behaviour for channels, like (6, 0; 7), of the
form (n1, 0;n1 + 1). As remarked in point (iii) above, conservation of angular momentum
closes this channel within the expectation-value model for α 6= 45°: the second-harmonic
driver contributes −7 units of angular momentum, and the six spins of sin(2α) are only
sufficient to allow a physical harmonic spin of σ ≥ −1 when sin(2α) = 1. Within the
decomposition-based model, on the other hand, a slightly off-circular field can still produce
harmonics: it is seen as a circular field of slightly reduced intensity, with the added
presence of a left-circular driver which cannot participate in the process at that order, so
the harmonic signal is only reduced slightly, as observed in experiment and in numerics.

The other predictions of the expectation-value model can also be replicated. The
symmetric case is identical for both models, so the restriction that |n1 + n2| = 1 there
also holds; the V-shaped pattern is explained well together with the existence regions
of the harmonics; and the restriction that n1 ≥ n2 − 1 is a consequence of the identity
n+ = n− + n2 + σ.

It should be stressed, however, that modelling HHG with lowest-order perturbation
theory has intrinsic limitations, starting with the complete lack of a harmonic plateau.
In this extreme nonlinear setting, many orders of perturbation theory contribute to each
harmonic, involving many steps of absorption and stimulated emission of driver photons,
and there is as yet no consistent theory to account for their interference. Nevertheless, the
basic ellipticity dependence of the lowest order, embodied in (8.13) and (8.14), is a good
guide to where to look for each channel; as we have seen, it is remarkably successful.

8.5 Subchannel splittings

We see, then, that the decomposition-based model can account well for the main features
seen in the experiment and in numerical simulations. However, because of its limitations, it
is desirable to have additional confirmation that it is indeed the correct way to understand
the process.

One way to do this is to exploit the principle that the right- and left-circular compo-
nents of an elliptical field must be treated independently by actually tuning their frequen-
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cies independently. That is, to modify the field in (8.10) into the form

F = E0
2
(
cos(δα)e−iωtêR + sin(δα)e−iω′têL

)
+ c.c., (8.16)

where the frequency ω′ of the counter-rotating fundamental is now independent of ω. In
such a field, the energy conservation equation reads

Ω(n+,n−;n2) = n+ω + n−ω
′ + n2rω, (8.17)

and the old channels (n1, n2) should split into the two subchannels of (8.15) with a splitting
proportional to the detuning δ = ω′ − ω.

In the time domain, the field in (8.16) has an elliptical polarization which slowly rotates
over time, since the two circular components, at close to the same frequency, accumulate
a relative phase throughout the pulse. Here the axes of this ellipse need to perform at
least one full rotation: for a splitting of δ to be detected in the spectrum, the harmonic
linewidth must be of that order, which means the pulse must be longer than 2π/δ, and
therefore the two circular components accumulate a relative phase of at least 2π over the
whole pulse.

This variation on the experiment can, in principle, be tested experimentally, though
this adds a further layer of complexity. On the other hand, it is straightforward to imple-
ment numerically and it does not add new complications to the numerical methods, which
must already be general enough to deal with arbitrary polarizations in two dimensions.
(It does, however, add to the required duration of the simulation, which can be a problem
for TDSE-based approaches.)

As a test of this variation, then, we calculate the resulting spectra within the SFA,
by direct numerical integration as we developed it in 7.2 and as implemented in Ref. 8.
These results are shown in Fig. 8.8, and they show the correct linear dependence of the
harmonic energy Ω(n+,n−;n2) as a function of the relative detuning δ/ω between the two
circular components of the fundamental. Subchannels with as many as seven photons
absorbed from the left-circular component can be identified, even though, at α = 35°,
the counter-rotating component of the fundamental carries only sin2(δα) ≈ 3% of the
total intensity.

While it is clear that there are additional mechanisms and higher-order channels at
work (as shown, particularly, by the intensity modulations of the harmonic lines over de-
tuning), the harmonic energies follow very tightly the essential linear dependence with
the correct slopes. This is strong evidence that the photon-exchange picture of the
decomposition-based model is the correct way of interpreting the experiment, both in
the detuned cases and in the degenerate case of pure elliptical polarization, when ω′ = ω.

8.6 The four-wave mixing case

Having reviewed both models, in the rest of this chapter we will focus on the lowest-
order channel, (1, 2), which reduces to sum-frequency generation in the standard four-wave



8. Spin conservation in bicircular high-order harmonic generation 187

Figure 8.8: Dependence of the harmonic energies as a function of the relative detuning δ/ω =
ω′/ω − 1 between the right- and left-circular components of the elliptically polarized fundamental
driver, as in Eq. (8.17), with the different channels marked and changing linearly at different
slopes.. The simulation uses the software from Ref. 8, with a 25-cycle flat-top pulse with 2 1

2 cycles
of sinusoidal on- and off-ramp; we use equal-intensity drivers at 2× 1014 W/cm2, driving argon
with an S-type orbital, and we set α = 35°.

mixing nonlinear optics formalism. This process is possible at much lower intensities, where
ionized electrons cannot carry away angular momentum, so this brings the problems of
the expectation-value model to the fore. This also means that the standard methods of
perturbative nonlinear optics are applicable, and we show that this coincides with the
predictions of the decomposition-based model.

Consider, then, the channel (1, 2), which is of the problematic form (n1, n1 + 1)
discussed in point (iii) above. This is essentially the generation of the sum frequency
ω3 = ω1 + 2ω2 [291], and it can be done at much lower intensities in any medium with an
isotropic third-order susceptibility tensor

↔
χ (3); it is shown schematically in Fig. 8.9. As

before, the driver at ω2 = rω is fixed at a left circular polarization, while the ellipticity ε
of the driver at ω1 = ω can be varied from right circular through linear to left circular.

From the perspective of the expectation-value model, the process cannot happen unless
the ω1 driver has a right circular polarization, with an ellipticity of ε = 1. If the field is
even slightly elliptical, the expectation value of the spin per photon decreases to 〈σ1〉 =
2ε/(1 + ε2) = sin(2α) < 1, and there is no longer a way for the total spin to be greater
than −1.

Within the decomposition-based model, on the other hand, the elliptical driver is un-
derstood as a superposition of circularly polarized drivers of spin ±1, each with amplitude
(1± ε)/

√
2(1 + ε2). If the polarization is slightly off-circular, most of the amplitude is in

the right-circular driver, which can still participate in the process, and a slightly reduced
harmonic signal is obtained.
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Figure 8.9: The channel (1, 2), essentially a four-wave mixing process at its lowest order and
therefore also observable in the perturbative regime, for an elliptical driver at frequency
ω1 and a left-circular driver at frequency ω2 combining to make a left-circular harmonic
at frequency ω1 + ω2. By decomposing the elliptical driver as a superposition of circular
polarizations one obtains an allowed process with a right-circular ω2 driver, and a forbidden
process with three left-circular drivers which has too much angular momentum for a single
harmonic photon.

More specifically, as the allowed process takes in one photon from the right-circular
component at frequency ω1, the harmonic field will be proportional to the component’s
amplitude,

E ∼ 1 + ε√
2(1 + ε2)

= cos(δα), (8.18)

and the output intensity will be the square of this. Here one should also note that
there will be some nonzero harmonic intensity for all ellipticities except for the com-
pletely left-circular case, which includes many cases with negative expectation value of
the photon spin.

The predictions of the decomposition-based model are here in complete agreement with
the predictions of standard perturbative nonlinear optics [292, 293], which was shown early
on to conserve spin angular momentum [294, 295]. In this treatment, the sum-frequency
wave at ω3 = ω1 + 2ω2 is generated by the nonlinear polarization

P(3) = ε0
↔
χ(3)...F F F, (8.19)

where the vertical dots denote a three-way tensor contraction. In component form, this
relation reads P (3)

i = ε0
∑
jkl χ

(3)
ijklFjFkFl.

To obtain the sum-frequency component of this polarization, one expresses the electric
field as a sum over the participating modes,

F =
3∑

α=1

[
Fαe

i(kα·r−ωαt) + F∗αe−i(kα·r−ωαt)
]

(8.20)

and looks for the component of the polarization which oscillates as ei(k3·r−ω3t). Substitut-
ing the expression (8.20) into the contraction in (8.19) results in eight terms, depending
on whether Fα or its conjugate is taken. Each of the eight terms describes a different
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process, which include parametric amplification or self- and cross-phase modulation [293];
the sum-frequency generation process we want is the term with three factors of Fα. This
has the polarization amplitude

P3 = ε0
↔
χ(3)...F1F2F2e

iϕ, (8.21)

where ϕ = (k1 + 2k2 − k3) · r− (ω1 + 2ω2 − ω3)t.
To calculate the contraction in (8.21) we impose the isotropy condition on the suscep-

tibility tensor
↔
χ (3). The only isotropic tensors of rank 4 have a component form δijδkl

[296, §3.03], which corresponds to the tensor action

↔
δ ...uvw = u(v ·w). (8.22)

That is, the tensor contracts its second and third inputs, and produces a vector along
its first input. The contraction in (8.21) produces three terms of this form, with different
permutations of its inputs. Each of these terms will in principle have a different frequency-
dependent complex scalar susceptibility χ(3)

s (ωα, ωβ, ωγ), but only one term will be allowed
so this distinction can be dropped.

Under these conditions, the sum-frequency polarization becomes

P3 = ε0χ
(3)
s eiϕ

(
2F2(F1 · F2) + F1(F2 · F2)

)
. (8.23)

Here F2 = F2êL is left polarized, which means that the second term vanishes: in a frame
where the propagation direction is in the z axis,

êL · êL = 1√
2


1
i

0

 · 1√
2


1
i

0

 = 0. (8.24)

The amplitude for the field at ω1 encodes the ellipticity dependence, through the analog
of (8.2),

F1 = F1

(
1 + ε√

2(1 + ε2)
êR + 1− ε√

2(1 + ε2)
êL

)
. (8.25)

This is projected on the amplitude F2, which eliminates the left-circular component as
per the inner product in (8.24), and multiplies the left-circular vector F2, so that the final
amplitude is

P3 = ε0χ
(3)
s eiϕF1F

2
2

1 + ε√
2(1 + ε2)

êL. (8.26)

The ellipticity dependence of this result is exactly that predicted by the decomposition-
based model, and indeed it’s clear that its predictions in the general case simply represent
the leading-order perturbative term for the channel; the expectation-value model, on the
other hand, predicts the process is forbidden except for ε = 1. Therefore, at least in
the cases where perturbative optics holds, using the expectation value of each photon’s
angular momentum in the conservation equation leads to incorrect results.



190 Electron dynamics in complex space and complex time

This is slightly counter-intuitive, as one does expect a conservation equation to hold
at the level of expectation values for every conserved quantity, but a direct application in
the form of Eq. (8.5) is inconsistent with formal perturbative treatments where those are
available, and would need further justification for its use in more highly nonlinear cases.

Nevertheless, it is indeed possible to understand the generation of harmonics by ellip-
tical drivers, in both the perturbative and extreme-nonlinear cases, in terms of a simple
photon picture, even when that photon picture is manifestly inadequate for many essential
aspects of the emitted radiation. Our model provides a simple framework for this under-
standing, which is in agreement with the available experimental observations and whose
predictions are borne out by numerical calculations.

This allows us to conclude, then, that high-order harmonic generation generally con-
serves spin angular momentum, in the detailed sense of parametric photon-to-photon pro-
cesses – or, at least, it does so in this specific situation, which stretches that behaviour
to its limits. HHG, as shown in our model and later minor extensions by others [265], is
so far consistent with a picture as a parametric process where multiple driver photons get
up-converted into harmonic photons and the atom returns to its ground state after the
recombination step, at least as far as angular momentum is conserved.



Chapter 9

Nondipole effects in high-order harmonic generation using
noncollinear bicircular beams

In this chapter we turn to the extension of HHG in another frontier – the extension of
the plateau to higher harmonic cutoffs, in the search for shorter wavelengths and the
possibility of shorter pulses and experiments at higher temporal resolutions.

At first brush, increasing the HHG cutoff – Ωmax = Ip + 3.17Up – is simply a tech-
nological challenge in increasing the intensity and using longer wavelengths, and ensuring
that the phase matching works. However, there is also a fundamental limit, because as
the cutoff energy increases, the electron will eventually be fast enough that the Lorentz
force, Fm = v/c×B, becomes significant.

In this chapter we develop and test a way to overcome this limitation, by using building
of the constructions of the chapter 8: the use of two counter-rotating circularly polarized
driving lasers, this time at equal frequencies and with non-collinear propagation directions.

The material in this chapter has previously appeared in reference

6. E. Pisanty, D. D. Hickstein, B. R. Galloway, C. G. Durfee, H. C. Kap-
teyn, M. M. Murnane and M. Ivanov. High harmonic interferometry of the
Lorentz force in strong mid-infrared laser fields. arXiv:1606.01931 (2016).

Moreover, the extensions to the Lewenstein-model SFA calculations are implemented and
openly available as

8. E. Pisanty. RB-SFA: High Harmonic Generation in the Strong Field Approxima-
tion via Mathematica. https://github.com/episanty/RB-SFA, v2.1.2 (2016).

9.1 The Lorentz force in high-order harmonic generation

As we saw in chapter 7, high-order harmonic generation generally produces a flat plateau
of harmonics that extends through to the high-harmonic cutoff at frequency

Ωmax = Ip + 3.17Up = Ip + 3.17 F
2

4ω2 . (9.1)

In general, one of the goals of the field is to extend this cutoff frequency, by using higher
intensities and longer driving wavelengths, since higher cutoffs open new experimental
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regimes with bigger photon energies, such as exploration of the water window using bright
and coherent soft x-ray microscopes, and the testing of ultrafast phenomena at even
faster time-scales, such as relaxation phenomena in core electrons in biological molecules,
among others.

To a certain extent – or, at least, as far as the three-step model is concerned – increases
in the field intensity and wavelength are roughly equivalent, since they both increase
Up and decrease the Keldysh parameter γ. However, there is a definite preference for
increasing the cutoff via increases in the driver wavelength, since increasing the intensity
too much will eventually saturate the ionization of the sample, and while one can hope for
high-harmonic emission from highly charged ionic species, it has yet to be experimentally
demonstrated.

Increasing the wavelength, on the other hand, increases the ponderomotive energy of
the field (essentially, by giving the electron a longer time in which to harvest energy from
the field), without risking ionization saturation. Producing high-intensity laser systems at
wavelengths longer than 800 nm is a technological challenge, mostly met via optical para-
metric chirped-pulse amplifiers, and while longer wavelengths do offer lower intensities and
repetition rates than the better tested titanium-sapphire technology, the available inten-
sities at long wavelength are rising and are predicted to continue increasing as technology
develops.

Beyond this technological limitation, long-wavelength HHG is limited by the fact that,
with the electron spending longer times in the continuum, its wavepacket will spread
further, which then diminishes the recollision probability. Moreover, as the driving wave-
length increases and the harmonic wavelength becomes ever shorter, the challenges posed
by phase matching can change considerably [209]. Nevertheless, both of these limitations
can be successfully addressed, and harmonics as high as 1.4 keV – with harmonic orders
as high as 5000 – have been produced using 3.9 µm drivers [198]. Indeed, wavelengths as
high as 10.6 µm are under consideration [297–299].

However, this programme runs into a surprising limitation in that the dipole approx-
imation breaks down in the long wavelength regime: as the wavelength increases, the
electron has progressively longer times to accelerate in the field, and the magnetic Lorentz
force Fm = v/c × B becomes significant [300]. This pushes the electron along the laser
propagation direction and, when strong enough, makes the electron wavepacket completely
miss its parent ion, quenching all recollision phenomena, including high harmonic gener-
ation [46, 299, 301–307] (but also extending e.g. to above-threshold ionization [308]). In
this regime, the usual harmonic plateau drops by several orders of magnitude and it loses
intensity at the cutoff, as showcased in Fig. 9.1.

Multiple schemes have been proposed to overcome this limitation, falling along two
main lines: the generating medium, and the driving fields. On the side of the medium,
proposals have ranged from antisymmetric molecular orbitals [309] through relativistic
beams of highly-charged ions [310, 311] to exotic matter like positronium [312, 313] or
muonic atoms [314]. Most of these represent significant challenges in target engineering,
and the only one that is currently feasible, the use of antisymmetric molecular orbitals to
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Figure 9.1: Quenching by the Lorentz force of the harmonic emission of helium under a
six-cycle pulse at 8 µm and 1015 W/cm2, as compared to the same conditions under the
dipole approximation, shown in gray. Figure excerpted from Ref. 299.

ionize from one site and recombine on the other, has limited ability in terms of the Lorentz
drift it can accommodate.

Similarly, driving-field proposals also represent significant challenges. The proposed
methods include counter-propagating mid-IR beams [315–319], the use of auxiliary fields
propagating in orthogonal directions [306], fine tailoring of the driving pulses [320–322],
counter-propagating trains of attosecond pulses [323, 324] in the presence of strong mag-
netic fields [325], and collinear and non-collinear X-ray initiated HHG [326, 327]. Gen-
erally, these methods also pose significant challenges: as examples, counter-propagating
beams make it very hard to direct the harmonic emission into a single beam, orthogo-
nal beams severely limit the interaction region, and finely-tailored pulses have yet to be
demonstrated at sufficient intensity to produce harmonic emission.

Perhaps most promisingly, it is possible to eliminate the effect of the magnetic force,
at least in parts of the interaction region, with the use of a very tight focus for the
driving laser [322, 328], which can also be extended to long-wavelength light in narrow
waveguides [14]. This method uses the fact that, in a tight laser focus, scalar optics fails,
and the vector optics of a gaussian focus give a field with a nonzero component along
the propagation direction [329], which can then be used to manipulate the continuum
electron’s motion along this direction.

Unfortunately, this method requires a very tight focus to work; the required focal
lengths are within the present possibilities, but this still presents severe challenges through
its impact on phase matching. Moreover, the effect will vary, strongly, across the focus [14],
making the far-field properties of the emission a complete (but interesting) unknown at
this point.
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9.2 Cancelling the Lorentz force with noncollinear beams

In this chapter we will propose and develop an alternative method for dealing with the
Lorentz force, which will allow experiments that cancel this drift to re-enable harmonic
emission as well as to probe it and demonstrate it in HHG experiments using currently
available technology.

We address the motion in the propagation dimension using a forwards-elliptical field –
a field with a polarization ellipse with a minor axis along the propagation direction, or
more specifically along the direction of the Lorentz force – exactly as achieved by the
tight-focussing scheme described above. However, there is a much simpler way to achieve
this ellipticity, and it is through the use of two counter-rotating, bicircular fields, of the
same frequency, which are focussed non-collinearly, as shown in Fig. 9.2.

Figure 9.2: The proposed beam configuration (a), with two non-collinear, counter-rotating
circularly polarized beams converging on a gas jet, typically at a beam half-angle θ of
the order of 5°. At their focus, the two beams generate a polarization gradient (b) which
includes points with an elliptical polarization with the minor axis along the centreline of
the system.

In general, adding two coplanar circular polarizations at the same frequency simply
results in a linear polarization at that frequency, with the polarization direction determined
by the relative phase between the two circular components. Here, however, the two circular
polarizations are not coplanar, since the propagation directions are at a slight angle, which
means that they have a nonzero component along the centreline of the system, the z axis
of Fig. 9.2, and this component of the two fields can still add constructively to give an
elliptical polarization with the minor axis along the centreline. Conversely, at these points
the off-plane magnetic field components of the two beams cancel out, giving a Lorentz
force along the centreline and in the plane of ellipticity of the electric field.

This configuration, then, affords us a good measure of control over the propagation-
direction component of the electric field, and therefore allows us to influence the motion
of the electron in this direction. Most interestingly, the electric field component can be
chosen to guide the electron back to the ion even in the presence of a nonzero Lorentz
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Figure 9.3: Schematic trajectories for the beam configuration of Fig. 9.2. The usual linear
trajectories (a) are shifted by the ellipticity (b), which cancels the Lorentz drift that would
otherwise occur for a linear driver (c), driving the electron back to the ion (d) and thereby
re-enabling the harmonic emission.

force.
However, this can only happen once per period, because the symmetries of the Lorentz

force and the forwards ellipticity do not match: the Lorentz force pushes forward along the
propagation direction on both half-cycles (as shown in Fig. 9.3(c)) and the ellipticity pushes
backwards for one ionization burst but forwards on the other (as shown in Fig. 9.3(b)), so
while one trajectory can be recovered, the other ionization burst will be inevitably lost.
This will, of course, have an impact on the signal – but half of the signal we initially
wanted is still an improvement over no signal at all.

More importantly, however, this break in the symmetry between half-cycles also leaves
clear marks on the spectrum, in particular through the presence of even harmonics. With
a linear driving field (even in the presence of the magnetic Lorentz force), the contributions
to the even harmonics of the two opposite recollisions in each laser cycle exactly cancel,
leaving only the odd harmonics observed in Fig. 7.1. Here, however, the two half cycles
have different weight (and indeed one of them may not emit at all), so the result will be
a signal in the even harmonics.

Moreover, because this even-harmonics signal depends on the difference between the
two radiation bursts, it can be measurable even if the Lorentz-force effect is small. This
means, in turn, that the mechanism can be used to provide an experimental observation
of the Lorentz-force effect within HHG: because it requires very high intensities and long
wavelenths, the effect has only been observed in ionization experiments [330, 331], but
its presence is yet to be confirmed within HHG, and the onset of the harmonic die-out
shown in Fig. 9.1 is still technologically some way away. However, as we shall see, the even
harmonics signal is strong enough to be detected by sources that are currently available.

Here it is interesting to remark that the even-harmonics signal, in fact, depends inter-
ferometrically on the difference between the two radiation bursts, so it can be triggered
by a difference in phase as well as in amplitude. This radically changes the scaling of
the signal with respect to the experimental parameters – it goes linearly with the ratio of
the Lorentz drift to the wavepacket width, instead of quadratically, making it much easier
to detect. In this chapter we will not explicitly trace the even-harmonics signal to the
difference in phase between the two radiation bursts (as opposed to a difference in ampli-
tude), leaving that for future work, but the calculated strength of the even harmonics is
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sufficient for the experimental prediction, and strong evidence that interferometric effects
are indeed present.

It is also important to note the strong connections of this experiment to the bicircular
experiments described in chapter 8. Here, as opposed to the collinear, bichromatic ex-
periments described there, we have single-frequency fields in a non-collinear arrangement,
but much of the spirit of the results there holds: the selection rules are still valid, and
in the photon picture each harmonic photon comes from n photons from one beam and
n ± 1 photons from the other, except that now the effect of this selection rule is not in
energy but in the transverse momentum of the photon. Thus, each harmonic is confined
to two symmetric spots on either side of the centreline. This has, in fact, been observed
experimentally by D.Hickstein and co-workers [261], and we refer the reader there for a
closer analysis of the angular selection rules.

Similarly, and as we argued in section 8.2, this photon picture is grounded in the
symmetries of the experiment. In this specific case, the two counter-rotating beams set up a
polarization grating across the focus, as shown in Fig. 9.2(b), with the direction of the main
polarization rotating as the phase between the two beams changes across the focus. In this
chapter, however, we will ignore the effects of this polarization grating, concentrating on
the microscopic emission from a single location where the forwards ellipticity is strongest.

Likewise, we will leave for future work the photon-picture and far-field propagation
properties of the even harmonics, focusing only on their strength at the place where their
emission is maximal. While this leaves open the question of how strong the overall even-
harmonics emission will be, it also leaves untouched another major advantage of the even-
harmonics signal – that the even harmonics must, by symmetry, be spatially separated
from the odd-harmonics signal, making their detection far easier.

The possibility of a forwards-elliptical field, with its polarization ellipse along the
propagation direction, runs counter to most of the intuitions built by standard plane-wave
vacuum electrodynamics, but it is indeed possible. Moreover, this configuration provides a
flexible, readily available experimental setup, especially when compared to the challenging
experimental proposals we considered earlier.

In particular, the non-collinear beams allow the focal spot size (and therefore the laser
intensity) to be decoupled from the degree of forwards ellipticity. This ability is crucial,
since it allows the ionization fraction to be tuned for phase-matching, and more generally
(and in contrast to the tight-focusing scheme of Refs. 14 and 328) it makes the entire focal
geometry available as a tool for phase matching. This then makes the scheme light and
flexible, with a lot of scope to adapt to multiple different requirements.

9.3 High-order harmonic generation beyond the dipole ap-
proximation

To bring things on a more concrete footing, we consider the harmonics generated in a
noble gas by two beams with opposite circular polarizations propagating in the x, z plane
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(in the reference frame of Fig. 9.2(a)), with wavevectors

k± = k(± sin(θ), 0, cos(θ)), (9.2)

where the angle θ to the centreline on the z axis is typically small. The vector potential
therefore reads

A(r, t) =
∑
±

F

2ω


cos(θ) cos(k± · r− ωt)
± sin(k± · r− ωt)

± sin(θ) cos(k± · r− ωt)



= F

ω


cos(θ) cos(kz cos(θ)− ωt) cos(kx sin(θ))

cos(kz cos(θ)− ωt) sin(kx sin(θ))
− sin(θ) sin(kz cos(θ)− ωt) sin(kx sin(θ))

 . (9.3)

As an initial approximation, for small θ, the polarization planes coincide, and the
polarization becomes linear, with a direction which rotates across the focus:

A(r, t) ≈ F

ω


cos(kx sin(θ))
sin(kx sin(θ))

0

 cos(ωt), (9.4)

where we set z = 0 and therefore just examine a single transverse plane. However, when
taken in full, the vector potential has a slight ellipticity, with a maximal value of ε = sin(θ)
when kx sin(θ) = π

2 , in which case

A(r, t) = F

ω


0

cos(ωt)
sin(θ) sin(ωt)

 . (9.5)

In experiments, the beam half-angle θ will typically be small, on the order of 1°
to 51° [261], with corresponding ellipticities of up to ε = sin(θ) ≈ 9%, which is enough to
counteract even significant magnetic drifts while still maintaining a flexible experimental
scheme.

The generation of harmonics beyond the breakdown of the dipole approximation has
been described in a fully-relativistic treatment [46, 307, 332], but this can be relaxed to
the usual Strong-Field Approximation, as we developed it in section 7.2, with appropriate
modifications to include non-dipole effects [302–306]. (Similarly, full TDSE simulations
are possible [333], but they become very demanding in this regime.)

If a single beam is present, non-dipole terms break the dipole selection rules and
produce even harmonics, but these are polarized along the propagation direction and
therefore do not propagate on axis. The use of multiple beams in the non-dipole regime
allows for observable breakdowns of the selection rules [230], and indeed the generation of
harmonics in this beyond-dipole regime has been explored for multiple-beam configurations
by V.Averbukh and co-workers in Ref. 230, but the available results are only valid for
very restricted beam arrangements. In the rest of this section, then, we will extend the
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available formalism, pioneered by N. J.Kylstra and co-workers [303–306] to arbitrary beam
configurations.

As we noted earlier, the presence of the Lorentz force as a factor in high-order harmonic
generation represents the breakdown in the dipole approximation, for the simple reason
that in the dipole approximation there is no magnetic field present. Or, to put this another
way, ignoring the spatial variation of the vector potential also completely zeroes out its
curl, and therefore the magnetic field. Conversely, if we want to describe the effect of
the magnetic field, then we need to go beyond the dipole approximation and include the
spatial variation of the vector potential. For our purposes, however, it is sufficient to
consider this to first order

We start, therefore, with the Coulomb-gauge hamiltonian, with the spatial variation
of A taken to first order in r,

ĤV = 1
2 (p̂ + A(r̂, t))2 + V̂0 (9.6)

= 1
2 (p̂ + A(0, t) + (r̂ · ∇)A(0, t))2 + V̂0. (9.7)

We then perform a unitary transformation to |ΨL〉 = eir̂·A(0,t) |ΨV 〉, as in the dipole case,
and we define this as the length gauge. Here the hamiltonian reads

ĤL = 1
2 (p̂ + (r̂ · ∇)A(0, t))2 + r̂ · F(t) + V̂0, (9.8)

with F(t) = −∂A
∂t (0, t). Moreover, we neglect terms in ((r̂ · ∇)A(0, t))2 for consistency, as

they are of higher order in kr, to get our final hamiltonian

HL = p̂2

2 + r̂ · F(t) + r̂ · ∇A(t) · p̂ + V̂0 = Ĥlas + V̂0. (9.9)

Here the gradient ∇A(t) denotes a matrix whose i, j-th entry is ∂Aj
∂xi

(0, t), so in component
notation the laser-only hamiltonian reads

Ĥlas = p̂2

2 + x̂jFj(t) + x̂j
∂Ak
∂xj

(t)p̂k, (9.10)

with summations over repeated indices understood.∗

Calculating the harmonic emission caused by the hamiltonian (9.9) is essentially as
simple as in the dipole case, and one only needs to modify the continuum wavefunction to
include the non-dipole term. We are looking, then, for non-dipole, non-relativistic Volkov

∗As an anonymous referee pointed out, the hamiltonian in equations (9.9) and (9.10) is not obviously
hermitian at an initial glance. However, it is quite easy to see that the order of x̂j and p̂k does not affect
the hamiltonian, since the difference between the two orderings reduces to the commutator [xj , pk], via

x̂j
∂Ak
∂xj

(t)p̂k − p̂k
∂Ak
∂xj

(t)x̂j = [x̂j , p̂k] ∂Ak
∂xj

(t) = i~δjk
∂Ak
∂xj

(t) = i~∂Ak
∂xk

(t) = i~∇·A(0, t) = 0.

The difference therefore comes down to the divergence of the vector potential (as, indeed, it does for the
more general term A(r, t) · p of the standard coupling), and this vanishes in the radiation gauge. This is,
of course, rather standard material [334].
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states, which should obey the Schrödinger equation for the laser-only hamiltonian Ĥlas,

i
d
dt
∣∣∣Ψ(V)

p (t)
〉

= Ĥlas(t)
∣∣∣Ψ(V)

p (t)
〉

(9.11)

and which remain eigenstates of the momentum operator throughout.
To generalize the dipole Volkov states, which we know from (2.17), we begin by phras-

ing them in the form ∣∣∣Ψ(V)
p (t)

〉
= e−

i
2

∫ t
π(p,τ)2dτ |π(p, t)〉 , (9.12)

where |π(p, t)〉 is a plane wave at the kinematic momentum π(p, t) = p + A(t), and then
looking for appropriate modifications to π(p, t).

Here, because of the requirement that the states remain eigenstates of the momentum
operator throughout, we can in fact forget about the Volkov phase e−

i
2

∫ t
π(p,τ)2dτ and

simply look to generalize the time dependence of the spatial component, the shifting plane
wave |π(p, t)〉, which in the dipole case obeys the Schrödinger equation

i
d
dt |π(p, t)〉 = r̂ · F(t) |π(p, t)〉 . (9.13)

Similarly, for the nondipole case we include here the first-order variation of the poten-
tial, so we’re looking for a solution of the Schrödinger equation

i
d
dt |π(p, t)〉 =

[
r̂ · F(t) + r̂ · ∇A(t) · p̂

]
|π(p, t)〉 . (9.14)

This equation is most easily solved by going briefly to the position representation, where
we can obtain the time derivative

i
d
dt 〈r|π(p, t)〉 = i

d
dt
eir·π(p,t)

(2π)3/2 = −r · ∂π(p, t)
∂t

eir·π(p,t)

(2π)3/2 = −r · ∂π(p, t)
∂t

〈r|π(p, t)〉 , (9.15)

from which it follows that

i
d
dt |π(p, t)〉 = −r̂ · ∂π(p, t)

∂t
|π(p, t)〉 . (9.16)

Then, by setting p̂ |π(p, t)〉 = π(p, t) |π(p, t)〉, the Schrödinger equation reduces to

r̂ ·
[
∂π(p, t)
∂t

+ F(t) +∇A(t) · π(p, t)
]
|π(p, t)〉 = 0, (9.17)

and from there to a simple equation for the kinematic momentum,

∂π(p, t)
∂t

− dA(t)
dt = −∇A(t) · π(p, t), (9.18)

with the electric field F substituted as the time derivative of the vector potential.
The time evolution equation (9.18) for π(p, t) is, formally speaking, an inhomogeneous

time-dependent Schrödinger equation in three dimensions, so it has a formal solution, via
a time-ordered exponential of

∫
∇A(t) dt, but this is far too complex for our purposes.

Since we’re only looking for the first perturbation with respect to the nondipole terms, we
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can simply look for solutions around the dipole trajectory, π(p, t) = p + A(t), and ask for
the effect of the nondipole perturbation −∇A(t) · π(p, t).

To get this, we write π(p, t) = p + A(t) + π(1)(p, t), in terms of the perturbation
π(1)(p, t), which obeys the equation

∂π(1)

∂t
(p, t) = −∇A(t) · (p + A(t))−∇A(t) · π(1)(p, t). (9.19)

Here we ignore the second term, ∇A(t)·π(1)(p, t), in the perturbative ethos. Alternatively,
we leave it for a second-order correction if necessary, but since each time integral of the
gradient introduces a factor of

∫
∇Adτ ∼ k

ωA = 1
cA, and our hamiltonian is only accurate

to first order in 1/c, then for consistency here we should drop the final term, reducing the
equation to simply ∂π(1)

∂t (p, t) = −∇A(t) · (p + A(t)), which can easily be solved to give

π(p, t) = p + A(t)−
∫ t

∇A(τ) · (p + A(τ))dτ, (9.20)

in terms of an indefinite integral
∫ t dt of the right-hand side of (9.18).

We have, then, our result – the kinematic momentum of (9.20) – and this directly
determines our nondipole nonrelativistic Volkov states via the same connection, (9.12),
as with the usual dipole Volkov wavefunctions. Since our modified Volkov states are
(approximate) solutions of the continuum Schrödinger equation, they also yield directly a
continuum propagator exactly as in (7.8). This means that we can just plug our nondipole
continuum dynamics directly into the rest of the SFA calculation of the HHG amplitude.
Then it is straightforward to take this directly to the harmonic dipole, which comes out
in the form

D(t) =
∫ t

−∞
dt′
∫

dp d(π(p, t))eiS(p,t,t′)F(t′) · d(π(p, t′)) + c.c. (9.21)

Here the action also retains its essential form as

S(p, t, t′) = Ip(t− t′) + 1
2

∫ t

t′
π(p, τ)2dτ, (9.22)

with the only change coming in the kinematic momentum π(p, t), which is now given
by (9.20). This result is a generalization to an arbitrary monochromatic vector potential
of the results of Refs. 303–306, and it is consistent with those results when restricted to
their single-beam settings.

However, the above formalism is not quite sufficient in the presence of multiple beams,
because it turns out that the antiderivative∫ t

∇A(τ) ·A(τ)dτ, (9.23)

from (9.20), can no longer be uniquely defined. In general, this occurs in the presence of
multiple beams at nontrivial angles and with nontrivial phases, but when that happens
the cross terms in ∇A(τ) ·A(τ) are oscillatory about a nonzero average. This then causes
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the integral (9.23) to contain a linearly-increasing term, whose constant of integration is
harder to pin down than the usual oscillatory terms.

Here it bears explaining that in the previous work on the subject [303–306], this prob-
lem was not present, because if one only considers a monochromatic field of the form
A(r, t) = A0ê cos(k · r− ωt), then the integrand in (9.23) can be explicitly calculated,
giving

∇A(t) ·A(t) = ∇A(0, t) ·A(0, t) = kA2
0 sin(ωt) cos(ωt). (9.24)

This oscillates about an average of zero, because the phase shift between A(t) and its
spatial derivative is precisely 90°. This then implies that for the problem to come up one
needs to consider multiple beams, for which the cross terms in (9.23) can oscillate about
a nonzero average; interestingly, the only multi-beam paper in this formalism, Ref. 230,
only deals with beam configurations with orthogonal polarizations, for which the inner
product of (9.23) also zeroes out the problem.

In previous work, then, the indefinite integral of (9.20) has only appeared with os-
cillatory trigonometric functions inside it, and these can be unambiguously assigned a
preferred antiderivative by replacing cosines with sines and sines with (minus) cosines.
For a general monochromatic field, however, this is no longer the case, and the integral in
(9.23) can have a constant term in the integrand, which causes our kinematic momentum
π(p, t) to have a linearly-increasing term.

This effect, in fact, is real and physical, going beyond our specific mathematics, and
it reflects the fact that the kinematic momentum is indeed subject to a linear walk-off:
that is, a constant force in the x, y plane, orthogonal to the laser propagation direction z,
in addition to the usual oscillations; we show this in Fig. 9.4. This constant force results
from the interplay between the magnetic field and the z-direction velocity imparted by
the elliptical electric field.

In practical terms, the effect is small, but even in the first period it affects the timing of
the ionization and recollision events, so it has a strong effect on the harmonic emission. As
such, if it is not handled correctly then it can introduce noise in a numerically calculated
spectrum (especially for monochromatic fields with no edge clipping, where aperiodicities
in the signal have a large effect) at the same level as the non-dipole signal we are looking
to detect, thereby ruining the spectrum.

From a more mathematical perspective, this effect implies that states given by (9.12)
and (9.20) cease to be Floquet states of the laser hamiltonian when the dipole approxima-
tion breaks down. The Floquet states in this case are known in terms of Airy functions [335]
but those solutions are not very useful in this context. The nondipole Volkov states we
use still form a basis of (approximate) solutions of the Schrödinger equation, but now they
require an initial condition.

To choose the appropriate initial condition, we note that the linear walk-off represents
a secular term [336] in these solutions, and we minimize the effect of this secular term by
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Figure 9.4: The classical trajectory of a particle released at rest at the peak of the field from (9.3)
exhibits oscillations about a central position which accelerates uniformly transversely across the
focus, with a parabolic trajectory. The effect is generally slight, and the parameters here (1.6 µm
beams at 1015 W/cm2 with θ = 20° at kx sin(θ) = 15°) are somewhat exaggerated, but the loss
of periodicity in (9.21) is serious. Similarly, the effect is only visually apparent over multiple
oscillations, but even on the first oscillation the effect changes the time of recollision and therefore
has a strong effect on the harmonic emission. This effect is also present for drivers with linear
polarization in the common plane of propagation.

choosing an explicit reference time at the moment of ionization:

π(p, t, t′) = p + A(t)−
∫ t

t′
∇A(τ) · (p + A(τ))dτ. (9.25)

This then trickles down to the action,

S(p, t, t′) = Ip(t− t′) + 1
2

∫ t

t′
π(p, τ, t′)2dτ, (9.26)

and to the harmonic dipole

D(t) =
∫ t

−∞
dt′
∫

dp d(π(p, t, t′))eiS(p,t,t′) × F(t′) · d(π(p, t′, t′)) + c.c. (9.27)

by going through the same steps as in section 7.2 once again.
This harmonic dipole is sufficient to evaluate the harmonic emission from arbitrary

beam configurations, and it can be further simplified by the use of the saddle-point approx-
imation for the momentum integral and, if required, the Uniform Approximation [337, 338]
for the temporal integrals. Our implementation, based on (9.27), is available from Ref. 8.
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9.4 Results

We have, then, a suitable tool for calculating the harmonics emitted by this system, so
we turn now to the resultant spectra. Here we concentrate on the single-atom emission
at the point of maximal forwards ellipticity, though of course the tool is ready for further
use on the problem, and this will be the focus of future work.

There are two main avenues of interest in our results: the recovery of harmonic emis-
sion from the Lorentz-drift-induced dropdown in the deep nondipole regime, where the
harmonic yield would otherwise essentially disappear, as in Fig. 9.1, and the emission
of even harmonics in the moderately non-dipolar regime, which is accessible to current
sources.

To showcase the former, we present in Fig. 9.5 the harmonic emission of a highly
charged neon ion in a very intense 800 nm field.∗ (These conditions are essentially equiv-
alent to Fig. 2b of [306], though in Fig. 9.5 we keep only the first pair of quantum orbits
for clarity.) It is easy to see that the ‘ideal’ harmonic yield, given by the standard Lewen-
stein SFA in the dipole approximation, drops down significantly once nondipole terms
are introduced (and, indeed, it continues to drop if the intensity is increased). However,
introducing even a small forwards ellipticity, with only a θ = 2° half-angle between the
non-collinear bicircular beams, can do much to restore the harmonic emission.

dipole
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Figure 9.5: Above-threshold harmonic emission for a Ne6+ ion in an 800 nm field of in-
tensity I = 1017 W/cm2, calculated in the uniform approximation using the first pair
of quantum orbits, and discarding z-polarized harmonics. For linear polarization, the
dipole-approximation emission drops by two orders of magnitude when nondipole effects
are included, but adding in even a small forwards ellipticity at θ = 2° can help recover the
harmonic emission.

Here it is also important to note that these results have only been very partially op-
timized, and that the harmonic recovery can certainly work better than displayed here.
Moreover, the curves as shown are slightly misleading: the blue curve, showing the re-
covered nondipole harmonics, contains both even and odd harmonics in essentially equal

∗Ideally, this should be done for a field of more moderate intensity by taking a longer wavelength, as in
the calculation of Ref. 299 shown in Fig. 9.5. The choice to use the high-intensity, moderate-wavelength
regime in Fig. 9.5 is to reduce the computational load on this initial application: at equal harmonic cutoff,
a smaller photon energy requires the calculation of more harmonics. However, since both directions are in
the deep γ � 1 regime, the nondipole SFA dynamics are essentially equivalent.
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measure (as can be seen e.g. in the under-resolved quantum-path-interference feature
near harmonic order 8000), so its spectral energy density should be considered to be twice
the shown yield.

Similarly, the ‘ideal’ curve to compare to is not exactly the full dipole-approximation
yield, since that contains two recollisions per half cycle, but as we discussed in Fig. 9.3
we can only hope to recover one of the two recollisions. Thus, we should consider the
target intensity to be half of the shown dipole-approximation yield, which means that the
gap as displayed, between the recovered nondipole emission in blue and the target dipole-
approximation emission in gray, is exaggerated by a factor of four. Once this is taken into
account, the shown spectrum recovers essentially all of the signal at cutoff, and it is only
down by a factor of two from the target over most of the spectrum.

On the other hand, it is a curious observation that the cutoff has been extended slightly
in the recovered emission. This is almost definitely an artefact of the method, chiefly of
the non-relativistic approximation, since the cutoff in fully relativistic SFA calculations
has been shown to decrease noticeably [307]. Planned calculations using a fully relativistic
theory should remove this artefact, but they are extremely unlikely to change the overall
enhancement, since the basic physics is preserved.

On another track, we present in Fig. 9.6 results for the generation of even harmonics in
more moderate fields, modelling helium in the non-dipole regime at intensities of 3.2×1014

and 1015 W/cm2 and for driver wavelengths of 800 nm and 1.6 µm. It should be noted that
the non-dipole even harmonics approach detectable intensities, between 0.1% and 1% of the
energy of the odd harmonics, even using 800 nm drivers (not normally thought of as having
a wavelength long enough for nondipole effects) at the relatively reasonable intensity of
1015 W/cm2, which is easily accessible to modern titanium-sapphire laser systems.

Similarly, when the wavelength is increased to 1.6 µm, at a maximum intensity of
1015 W/cm2 that is within the range of current optical parametric chirped-pulse amplifiers,
the contrast ratio between the even and odd harmonics increases even further, reaching
into the 10% of energy in the even harmonics, which is certainly measurable using current
detectors.

Furthermore, the even harmonics should also be angularly separated from the dipole-
allowed odd harmonics. This angular separation results from the conservation of momen-
tum, and it was clearly demonstrated for the dipole harmonics by Hickstein et al. [261]:
these must absorb an odd number of photons, but the conservation of spin angular mo-
mentum [3, 247] requires the harmonic to form from n photons of one beam and n + 1
photons from the other, resulting in a net transverse momentum of ±~kx = ±~k sin(θ) for
the odd harmonics. The even harmonics represent the parametric conversion of an even
number of photons, via the tensor operator r̂ ⊗ p̂ : ∇A, and they can therefore absorb
either zero transversal momentum – resulting in linear polarization along the y axis – or
±2~kx, with opposite circular polarizations. These even harmonics, then, should appear
at distinctly resolvable spots in the far field, which greatly simplifies their detection.

As a final note, it is important to remark that it is the interferometric quality of our
scheme that enables the detection of nondipole effects, by unbalancing (both in phase and
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Figure 9.6: Harmonic spectra (• odd and • even harmonics) produced in helium in the
non-dipole regime for intensities of 3.2 × 1014 and 1015 W/cm2 and monochromatic fields
of 800 nm and 1.6 µm at a beam half-angle of θ = 4°, on arbitrary scales and eliminating
z-polarized harmonics. The intensity ratio between even and odd harmonics varies from
∼10−3 for 800 nm drivers to ∼10% for strong mid-IR fields at 1.6 µm and 1015 W/cm2.
The required sources are on the high end of intensity at the given wavelengths, but they
are already accessible with current technology.

in amplitude) the interferometer which would otherwise suppress the even harmonics, and
this changes the scaling of this behaviour. In general, the wavepacket displacement scales
as d ∝ F 2/2cω3, and the wavepacket width goes as ∆x ∝ F 1/2/(2Ip)1/4 [323], so the
normalized displacement scales as

ζ = d

∆x ∝
(2Ip)1/4F 3/2

2cω3 . (9.28)

The strength of the even harmonics, which arises from an interferometric effect, is linear
in ζ, while the drift-induced reduction in harmonic emission follows the gaussian shape
of the wavepacket and therefore scales with η = ζ2 = (d/∆x)2, which explains why
the nondipole effects are still some way in the future in terms of detecting the drop-off
in harmonic efficiency, but still easily observable with currently available sources in our
results.
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9.5 Outlook

In this chapter we built a flexible and powerful tool for calculating harmonic emissions,
and we described the framework for a broad and varied subject matter in the experimental
scheme we proposed, but we left several avenues unexplored, and these form clear avenues
for future work.

Most importantly, the spatial variation of the polarization across the focus is a crucial
ingredient of the dynamics, as is clear from the far-field dynamics observed in the existing,
low-intensity experiment [261], and these become richer once the forwards ellipticity is
introduced and doubly so with nondipole effects, so it is certainly necessary to investigate
the behaviour of the harmonics across the focus.

Similarly, on a more theoretical note, the photon-picture properties of the nondipole
even harmonics still need a coherent picture; this is also relevant in the planning of ex-
periments to detect those even harmonics, which require a good understanding of their
propagation to the far field.

On another track, we showed that the even-harmonics signal is far stronger than would
be expected for only an amplitude imbalance in the intra-cycle interferometer that, in the
dipole case, rules out the even harmonics. However, there is still some work to be done to
show that there is, in fact, a phase imbalance as well, and to quantify this phase imbalance
in terms simple enough to be helpful in predicting features of the experiment.

Likewise, the scaling properties of all of these harmonics bear further investigation,
particularly so for the even harmonics. These should scale with ζ = d/∆x, but this should
still be confirmed with explicit SFA calculations, since knowledge of this scaling law is of
essential importance to designing specific experiments that implement the scheme.

Going a bit further than this, it is also important to investigate in more detail the
effect of phase matching on the features we investigated here and in the future work
we propose, especially so for several features of the far-field spectrum that turn out to
depend sensitively on changes in the intensity, and which require closer integration with
propagation simulations to produce reliable experimental predictions.

On a somewhat broader scale, the tools we have built in this chapter are also di-
rectly applicable to the tight-focus and waveguide geometries [14], in which they should
help uncover very rich spatial dynamics inside the focus, with the phase effects evidenced
by the strong scaling of our even harmonics likely playing a leading role. Similarly, our
beyond-dipole SFA is likely to be directly applicable to the generation of high-order har-
monics in nanostructures, where the vector potential changes in length scale of the electron
excursion [339, 340].

More generally, though, the generation of even harmonics from nondipole, Lorentz-
force effect is an experiment, available to current technology, waiting to be implemented,
and much of the interesting work ahead lies in the design and implementation of such an
experiment.
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Chapter 10

Conclusions

We have taken, over the course of this work, a tour through a rather wide expanse of
material, so by way of conclusion we present a short summary of the main paradigms we
have explored and the principal results we have uncovered.

Part I: Ionization

Analytical R-Matrix theory

In chapter 2 we lay down the groundwork for the ionization parts of this thesis, reviewing in
detail the construction of the Analytical R-Matrix theory of photoionization. We showed
how one can split space into an inner and an outer region, using the inner region as a
source term for the Schrödinger equation on the outer region, and how to employ the ionic
and Coulomb-corrected continuum wavefunctions to produce a simple trajectory-based
description of the photoionization, both on the single-active-electron direct channels as
well as for the multi-electron correlation-driven mechanism. In addition, we presented
in section 2.3 simple analytical formulas for a suitable model of a molecular orbital with
nontrivial geometry.

Multi-channel geometrical effects

In chapter 3 we built on the multi-electron Analytical R-Matrix expressions for the direct
and correlation-driven yields for photoelectrons that leave behind an excited ion, probing
the ionization of a suitable model of an aligned carbon dioxide molecule, with a nontrivial
combination of orbital geometries. There we showed how to implement a suitable modi-
fication of the saddle-point approximation for the correlation-driven geometrical factors,
giving clean and physically transparent expressions.

Finally, we showed how the nontrivial angular distributions obtained in this geometry
admit a simple interpretation as double-slit diffraction fringes that originate in a pair of
‘slits’ caused by the correlation-driven interaction with the ion inside the tunnelling barrier.

209
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Analytical continuation of electrostatic potentials

In chapter 4 we examined in detail one of the crucial ingredients of the multi-electron ARM
yield for correlation-driven ionization, the correlation interaction electrostatic potentials

〈Vnm(r)〉 =
〈
n

∣∣∣∣∣∣
N−1∑
j=1

1− δnm
‖r− r̂j‖

∣∣∣∣∣∣m
〉
, (4.2)

and their analytical continuations into complex positions r. We examined the naive an-
alytical continuation for an elementary gaussian orbital via direct numerical integration,
and we found it wanting, as it does not obey the Cauchy-Riemann equations.

We then focussed on the behaviour of simpler models – exponential and gaussian type
orbitals –, for which we can find exact expressions for the potentials, and therefore examine
their analytical continuations directly. Here we find that, for points that are ‘real enough’,
in the sense that

Re(r2) > 0, (4.32)

the different models agree surprisingly well, but that immediately upon leaving that region
the potential for the gaussian-type orbital catastrophically diverges.

This means, then, that as long as we keep our evaluations of 〈Vnm(rL(t))〉 to trajectories
that obey (4.32) throughout, we can be rather confident that the analytical continuation
is accurate, even if using gaussian-based quantum chemical calculations. Moreover, as
we showed in chapter 5, it is in fact possible to choose trajectories that adhere to this
constraint.

On the other hand, the other region – the points that are so imaginary that Re(r2) < 0 –
is much more challenging. As we argued, it is difficult to obtain any information, even of
a qualitative type, about the behaviour of the potential in this region, even though there
are formal existence theorems that guarantee us the existence of analytical continuations
of our interaction potential.

Quantum orbits in complex time and complex space

In chapter 5 we explored the origin and meaning of the imaginary part of the ARM
trajectory, which is of the form

rL(t) =
∫ t

ts
[p + A(τ)] dτ, (5.1)

and is generally complex-valued for real times t. This imaginary part emerges directly
from the Schrödinger equation, and more particularly from the boundary matching of our
eikonal Volkov states with the WKB asymptotic expressions for the states of the system
in the inner ARM region, and it is a crucial ingredient in allowing ARM do describe the
Coulomb enhancement of ionization.

However, this imaginary part of the position also combines with the branch cut of the
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square root in the Coulomb potential,

U(rL(t)) = − 1√
rL(t)2 , (5.11)

to imprint a series of branch cuts on the complex time plane, which we need to integrate
over to obtain the ARM yield. Moreover, these branch cuts can and do intersect the
standard contour along the real axis, which needs to be accordingly modified, ideally in
an algorithmic way which can be performed by a computer to calculate photoelectron
spectra.

This modification is possible by hinging on the concept of a time of closest approach,
that is, times tCA that obey equations of the type

rL(tCA) · v(tCA) = 0, (5.12)

and which are always present as saddle points in the middle of any gate formed by two
branch cuts. These have a fascinatingly rich geometry, with the complex-valued quantum
versions forming multiple sheets of a surface encasing the corresponding classical version,
and they show interesting topological transitions – with strong effects on the requirements
for the ARM integration path – at soft recollisions, where the laser-driven trajectory has
a turning point close to the ion.

Moreover, we were able to successfully and algorithmically choose the appropriate tCAs
to use as waypoints by requiring that they be ‘out of the tunnelling barrier’, having positive
real part of the kinetic energy v(t)2, after which it is possible to programmatically choose
appropriate integration paths that avoid complex, and fast-changing, configurations of
branch cuts. In addition, this navigation algorithm is also automatically able to steer us
clear of the problematic regions of chapter 4.

Low-Energy Structures and Near-Zero Energy Structures

In chapter 6, after a review of the available experimental evidence on the Low-Energy
and Near-Zero Energy Structures of mid-IR photoionization, we brought our branch-cut
navigation algorithm from chapter 5 to bear on experiment, by using it to analyse the LES
regions, which emerge naturally from one of the unavoidable (but resolvable) difficulties of
the algorithm: the soft recollisions, where multiple branch cuts come into close proximity,
interact, and undergo topological transitions.

Further, these LES peaks, which are well understood to be associated with these
soft recollisions, are joined within the ARM formalism by a dynamically equivalent set
at much lower energy, which approaches the ion on a forwards turning point, after an
integral number of periods, instead of the more usual backwards turning points after a
half-integral number of laser cycles.

We study the peaks caused by this new series of trajectories, showing that it produces
a peak at energies consistent with those observed for the NZES, and that it produces
qualitatively similar transverse photoelectron to those observed in high-resolution experi-
ments. Moreover, the identification of this series as a contributor to the NZES opens clear
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ways to test this mechanism experimentally: since the new series only needs to advance
by the tunnel exit over a laser period, instead of by the laser oscillation quiver radius
zquiv = F/ω2, its momentum and energy scale as

psr
z ≈

zexit
∆t = Ip/F

(n+ 1)π/ω ∝
Ipω

F
and 1

2 (psr
z )2 ∼

I2
p

Up
∼ Ipγ2, (6.15, 6.16)

respectively. Thus, the new series scales inversely with the ponderomotive potential Up (as
opposed to the known series, which scales as 1

2 (psr
z )2 ∝ Up), which means that it should

be possible to probe the role of the new series by using experiments in harder targets with
higher ionization potentials.

Part II: High-order harmonic generation

Conservation of spin angular momentum in bicircular HHG

After reviewing the standard theory of high-order harmonic generation in chapter 7, we
turned in chapter 8 to the generation of high-order harmonics by bicircular fields – counter-
rotating circularly polarized fields, one at the fundamental at 800 nm and one detuned from
its second harmonic, at 410 nm. We reviewed the experimental evidence that establishes
clear selection rules coming from the conservation of spin angular momentum, together
with the breakdown of these selection rules when the polarization of one of the drivers is
degraded from circular through linear.

We then provided a suitable photon-picture model that is able to explain the observed
harmonic emission while retaining a parametric picture of harmonic generation which
conserves spin angular momentum on a per-channel basis – and, indeed, while maintaining
consistency with known results when applied to the lowest-order channel, which reduces
to perturbative four-wave mixing.

Our model, based essentially on arguments lowest-order perturbation theory by sepa-
rating an elliptical driver into circular components and treating them separately, is sur-
prisingly effective at predicting the dependence of the harmonic emission on the ellipticity
of the driver. Moreover, it correctly matches the results of a numerical experiment, which
in principle can also be experimentally realized, where the two circular components of an
elliptical field are taken as separate and detuned independently

Nondipole effects in HHG through noncollinear bicircular beams

Finally, in chapter 9, we turned to the generation of harmonics in fields that are particularly
strong, or at a very long wavelength, or both, looking to extend the harmonic cutoff past
the barrier posed by the magnetic field of the driving laser as the velocity of the continuum
electron increases.

Here we proposed a simple and flexible scheme for addressing the continuum electron’s
motion along the direction, by combining two counter-rotating circularly polarized fields
of the same frequency in a non-collinear configuration to produce a field with a forwards
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ellipticity that acts in the same direction as the magnetic Lorentz force.
We then extended the existing beyond-dipole Strong-Field Approximation HHG for-

malism to deal with arbitrary beam configurations, showing that to do so one needs to use
slightly more complex nondipole Volkov states, and related this to a nontrivial average
force acting on charged particles across the focus.

Finally, with this extended beyond-dipole SFA in hand, we showed that the field con-
figuration can indeed help recover the harmonic emission from its exponential quenching
at the hands of the magnetic Lorentz force, and, moreover, that it can be used at much
lower intensities and wavelengths to produce even harmonics that can be used to demon-
strate the presence of the effect, for the first time in HHG, using currently available laser
sources.
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Appendix A

Atomic Units

This thesis uses, throughout the text, the atomic system of units, unless otherwise specified
(such as explicit indications of wavelengths, intensities, or photoelectron energies). The
atomic system of units is specifically designed to make the electronic hamiltonian for an
atom less cumbersome in terms of constants. More concretely, this is achieved by setting to
unity the main (dimensionful) physical constants of the quantum dynamics of an electron,

me = 1, ~ = 1, e2 = 1, and kc = 1
4πε0

= 1. (A.1)

As a result, the dynamics becomes essentially dimensionless, though after identifying the
physical dimension of a quantity, its SI units can be derived from the standard values.
We denote explicit numeric values in atomic units using the symbol a.u. (such as e.g. p =
0.5 a.u.). The conversion to SI or other values then follows using the following equivalences.

Quantity Unit Scaling Significance Value in SI units
mass me 1 Electron mass 9.109× 10−31 kg

action ~ 1 Reduced Planck
constant

1.054× 10−34 J s

charge e 1 Electron charge 1.602× 10−19 C

length a0 = ~2

mekce2 1/κ Bohr radius 5.291× 10−11 m

velocity αc = kce2

~
1/κ Bohr velocity 2.188× 106 m/s

time ~
EH

= ~3

mek2
ce

4 1/κ2 Bohr period 2.419× 10−17 s

momentum
√
meEH = mekce2

~
κ

Bohr
wavevector

1.993× 10−24 kg m/s

energy EH = mek
2
ce

4

~2 κ2 Hartree energy 4.360× 10−18 J
= 27.21 eV

electric field EH/e

a0
= m2

ek
3
ce

5

~4 κ3 Proton field
at 1a0

5.142× 1011 V/m

intensity ε0c

2

(
EH/e

a0

)2
κ6 Intensity at

F = 1 a.u.
3.509× 1016 W/cm2

Table A.1: Conversion factors between atomic units and the SI system, with the latter arbitrarily
truncated to four significant figures.

215



216 Electron dynamics in complex space and complex time

Two specific conversion factors, in particular, are useful to point out:

ω = 45.6 nm
λ

a.u. and F =
√

I

1014 W/cm2 0.053 a.u., (A.2)

giving the translation between the wavelength λ of a light beam and its angular frequency
ω in atomic units, and similarly between the intensity I of a monochromatic, linearly
polarized beam in W/cm2 and the peak electric field strength F in atomic units. The
numbers in this factors are easily obtained via

2πa0
α
≈ 45.6 nm and

√
1014 W/cm2

3.509× 1016 W/cm2 ≈ 0.053, (A.3)

where in the former α is the speed of light in atomic units, so a0/α is the frequency of
light of wavelength 1 a.u..

In addition to the explicit numbers, we retain a specific scaling column, which indicates
how the quantities vary with the ionization potential of the system. This is useful because
much of strong-field physics, from the SFA onwards, deals with essentially a single-electron
problem (so ~ = me = e = kc = 1 makes sense), which is nevertheless subjected to
some given potential well with a fixed and unknown ionization potential Ip. In terms of
equations, atomic units help simplify the hamiltonian of an N -electron atom,

Ĥ = −
N∑
i=1

~2

2me
∇2
i −

Ze2

4πε0

N∑
i=1

1
‖ri‖

+ e2

4πε0

N∑
i 6=j=1

1
‖ri − rj‖

(A.4a)

to an essentially dimensionless version,

Ĥ = −
N∑
i=1

1
2∇

2
i −

N∑
i=1

Z

‖ri‖
+

N∑
i 6=j=1

1
‖ri − rj‖

, (A.4b)

but there is still an additional parameter, the nuclear charge, which determines the be-
haviour of the system, including its ionization potential.

Since strong-field physics mostly cares about what happens far from the nucleus,
though, we can essentially reduce the effect of the atomic hamiltonian to just the ground
state energy, Ip, but this will also re-scale most of the relevant quantities: the character-
istic momentum and wavevector will scale with κ =

√
2Ip, the characteristic length of the

ground state will vary as 1/κ, and electric fields will change with κ3. Since all dimensional
analysis is essentially a scaling argument in disguise, the scalings with respect to κ afford
a way to do a limited amount of dimensional analysis even when working in atomic units.
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